求导y=ln(x 根号(x^2 a^2)),a为常数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 21:09:56
求导y=ln(x 根号(x^2 a^2)),a为常数
求导arctany/x=根号[ln(x^2+y^2) ] .根号在ln外面的

两边对x求导得1/[1+(y/x)^2]*(y/x)'=1/[ln(x^2+y^2)]*[ln(x^2+y^2)]'1/[1+(y/x)^2]*(y'x-y)/x^2=1/[2ln(x^2+y^2)]

y=tan(ln根号下x^2-1)求导

再答:���Ϻ����

y=根号(1+ln^2*x) 求导

y=√(1+ln^2*x)y'=[1/2√(1+ln^2x)]*(2lnx)*1/x则lnxy'=----------------------x√(1+ln^2x)

求导数y=ln根号[(1-x)/(1+x)]

ln根号[(1-x)/(1+x)]y'=(1+x)/(1-x)*[(-1-x-1+x)/(1+x)^2]=-2/(1-x^2)

y=ln(根号1+x/1-x) 求导数

y'=[1/(根号1+x/1-x)]*(根号1+x/1-x)'=[1/(根号1+x/1-x)]*(1/2根号1+x/1-x)*[(1+x)/(1-x)]'=[1/(根号1+x/1-x)]*(1/2根号

y=ln[ln(ln x)] 求导

复合函数f(x)=lnxg(x)=ln[ln(x)]r(x)=ln{lnln(x)]}r'(x)=[1/lnln(x)]g'(x)=[1/lnln(x)][1/ln(x)]f'(x)=[1/lnln(

y=ln^2x求导

1/x再问:求写一下过程拍照再答:再问:不是是ln二次方x再答:再答:懂了么再答:再问:懂了再答:别忘了采纳最佳答案

y=ln(x+根号下x平方+2)求导

=[1+x/(x^2+1)^(1/2)]/[x+(1+x^2)^(1/2)]

求导:y=ln(x+根号下(1+x^2))

y'=1/(x+√(1+x²))*(x+√(1+x²)'(x+√(1+x²)'=1+1/[2√(1+x²)]*(1+x²)'=1+2x/[2√(1+x

y=ln^2(1-x)求导

Y=[LN(1-X)]^2?Y'=2LN|1-X|/(1-X)(-1)=-2LN|1-X|/(1-X)

求导 y=ln(-x)

答:y=ln(-x)y'(x)=[1/(-x)]*(-1)=1/x所以:y=ln(-x)的导数为y'(x)=1/x再问:非常感谢,,,那y=ln(3x+2)的导和y=ln(4x+2)的导分别怎么算呢?

求导y=ln根号x+根号lnx

即y=0.5lnx+(lnx)^0.5所以求导得到y'=1/2x+0.5/[x*(lnx)^0.5]

求导 y=ln(tan(x/2))

y'=1/(tan(x/2))*(tan(x/2))'=1/(tan(x/2))*(sec^2(x/2))*(x/2)'=1/(2sin(x/2)*cos(x/2))=1/sin(x)=csc(x)

z=ln(x+a^-y^2) 对y求导,

z=ln[x+a^(-y^2)],以下'表示对y求偏导,z'=[a^(-y^2)]'/[x+a^(-y^2)]=(-y^2)'a^(-y^2)lna/[x+a^(-y^2)],z'=-2ya^(-y^

y=ln(1+x^2)求导

2x/(1+x^2)

y=ln(2x^-1)求导

y'=ln(2x^-1)'=(x/2)*2*(-1)/x^2=-1/x

y=ln(x^2+sinx)求导

复合函数求导,应用链式法则y'=dy/dx=[dy/d(x^2+sinx)]*[d(x^2+sinx)/dx]=[1/(x^2+sinx)]*(2x+cosx)故y'=(2x+cosx)/(x^2+s

y=ln根号下X 求导

y=ln√x=(1/2)lnxy'=1/(2x)再问:d()=1/根号下xdx括号内填什么再答:dy=(1/√x)dxy=∫(1/√x)dx=2√x+C(C是一个常数)