求幂级数1 n(2x 1)^n的收敛域
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 13:13:27
令和函数为f(x)f(x)=∑(nx^n)+∑(1/n)x^n记g(x)=∑nx^n,h(x)=∑(1/n)x^n则g(x)=x∑nx^(n-1)=x(∑x^n)'=x[x/(1-x)]'=x/(1-
S=∑(n=1到∞)[n(n+1)/2]x^(n-1)积分得:F=∑(n=1到∞)[(n+1)/2]x^n再积分得:G=0.5∑(n=1到∞)x^(n+1)=0.5x^2/(1-x)求导得:F=0.5
记f(x)=∑(n=2~∞)[nx^(n-1)]/(n-1)=∑(n=2~∞)x^(n-1)+∑(n=2~∞)[x^(n-1)]/(n-1)=g(x)+h(x),利用已知级数∑(n=1~∞)x^(n-
拆开算原式=∑(2/(n-1)!)*X^n-∑(x^n)/n!=2*x*e^x-(e^x-1)要用到公式∑n从0到无穷=e^x,注意一下n的下限是0即可题目是一故要减去n=0时的值1.
f(x)=∑x^n/[n(n+1)]求导:f'(x)=∑x^(n-1)/(n+1)F=x^2f'(x)=∑x^(n+1)/(n+1)再求导:F'=∑x^n=x/(1-x)=1/(1-x)-1积分:F=
输入符号需要时间,马上写来,等下.再答:级数∑(0,+∞)[1/n!]x^(2n+1)=x∑(0,+∞)[1/n!]x^(2n)=xe^(x^2)(|x|
本科水平,希望采纳
http://hi.baidu.com/fjzntlb/album/item/08e69d355982b2b75364188831adcbef77099b22.html#
本来拍了两张图片的,不过只能上传一张,额,解题方法是相同的,就是将这个级数分成两个,再分别求每个级数的收敛域,再取交集.(1/2,3/2]∩[2/3,3/2)=[2/3,3/2]这个是答案.纯手工打造
求幂级数Σ[(x-1)^n]/(n*2^n)的收敛域. 利用比值判别法,当 lim(n→∞)|u[n+1](x)/u[n](x)| =lim(n→∞)|{[(x-1)^(n+1)]/[(n+1
使用比值比较法易知幂级数的收敛域为(-1再问:怎么从第二步得到最后结果的?再答:ln(1+x)=x-x^2/2+x^3/3-x^4/4+……ln(1+x²)=x²-(x²
鉴于没有悬赏,电脑也不是很好用,我只能告诉你方法了先对x积分一下,得到∑[1/n!]x^(n+1)这个的和大概是x*e^x吧,然后求导就行(n+1)/n!拆开后求和
记 f(x)=∑(n=1~inf.)[(n-1)x^(2n-2)]/3^n =(1/3)∑(n=1~inf.)n[(x^2)/3]^(n-1)-(1/3)∑(n=1~inf.)[(x^2)/3]^(
﹙﹣∞,﹢∞﹚[e^﹙x/2﹚]﹙1+x/2+x²/4﹚再问:n从1开始,是不是要减1
应该是x^n/[n(n-1)]吧先两次求导得f''(x)=1+x+x^2+x^3+……=1/(1-x)(|x|
逐项求导,得到几何级数,然后求得和函数,在积分就得原幂级数的和,令x=1就得后一式子的和.这类题一般都可以用逐项求导、求积分的方法做.
设和为s(x),则s'(x)=∞∑n=2x^(n-2)=∞∑n=0x^n=1/(1-x),积分得s(x)=-ln(1-x),收敛域为[-1,1).