求幂级数x^n (n 1).3^n的收敛半径和收敛域
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 04:10:10
设S(x)=∑(x^n)/n,由系数比值法易求出收敛域为[-1,1)求导,得S'(x)=∑x^(n-1),此为几何级数所以S'(x)=1/(1-x)两端求定积分,积分限取为0和x则得S(x)-S(0)
f(x)=所求级数=1/3+级数从n开始求和级数中提出一个x来,=1/3+x求和(n=1到无穷)(-1)^(n-1)x^(2n-1)/(2n-1)3^(2n-1)=1/3+xg(x),则g'(x)=3
f(x)=∑x^n/[n(n+1)]求导:f'(x)=∑x^(n-1)/(n+1)F=x^2f'(x)=∑x^(n+1)/(n+1)再求导:F'=∑x^n=x/(1-x)=1/(1-x)-1积分:F=
本来拍了两张图片的,不过只能上传一张,额,解题方法是相同的,就是将这个级数分成两个,再分别求每个级数的收敛域,再取交集.(1/2,3/2]∩[2/3,3/2)=[2/3,3/2]这个是答案.纯手工打造
很多都是利用求导或者积分化成等比级数,这个题直接是等比级数∑(0,+∞)[(-1)^n/3^n]x^n=∑(0,+∞)(-x/3)^n=1/(1+x/3)=3/(3+x)(|x|
使用比值比较法易知幂级数的收敛域为(-1再问:怎么从第二步得到最后结果的?再答:ln(1+x)=x-x^2/2+x^3/3-x^4/4+……ln(1+x²)=x²-(x²
sinx=x-x^3/3!+x^5/5!-x^7/7!+.+(-1)^kx^(2k+1)/(2k+1)!+.sinx/x=1-x^2/3!+x^4/5!-x^6/7!+.+(-1)^kx^(2k)/(
鉴于没有悬赏,电脑也不是很好用,我只能告诉你方法了先对x积分一下,得到∑[1/n!]x^(n+1)这个的和大概是x*e^x吧,然后求导就行(n+1)/n!拆开后求和
记 f(x)=∑(n=1~inf.)[(n-1)x^(2n-2)]/3^n =(1/3)∑(n=1~inf.)n[(x^2)/3]^(n-1)-(1/3)∑(n=1~inf.)[(x^2)/3]^(
已经做过:lim(1/[(n+1)3^(n+1)]/(1/n·3^n)=1/3,故收敛半径为3当x=3时,为调和级数,发散当x=-3时.为收敛的交错级数收敛域为[-3,3)
和为e^3,只需利用e^x的幂级数展开式
利用基本级数展开e^x=∑(∞,n=0)x^n/n!求和
应该是x^n/[n(n-1)]吧先两次求导得f''(x)=1+x+x^2+x^3+……=1/(1-x)(|x|
收敛半径R=3-(-1)=4再问:解释一下可以吗?。。再答:条件收敛点只能在收敛域与发散域的分界点上
|a[n+1]/a[n]|=(√(n+2)-√(n+1))/(√(n+1)-√(n))*|(3x-1)|,令n趋于无穷,2|3x-1|
首先确定收敛半径,这个直接用书上的公式,两项相除求极限就可以了,极限是3,所以收敛半径R=3现在再来看端点处的熟练情况,x=3的时候就掠过啦,现在来说x=-3的情况,这是交错级数,一般的书上只给了一个
再问:x=0的时候为什么等于二分之一呢?后面的解答太好了!万分感谢!
n从0开始?∑[(-1)^n/3^n]x^n=∑[(-x/3)^n,此为等比级数,所以当|-x/3|<1,即|x|<3时,幂级数收敛,其和函数自然是1/[1-(-x/3)]=3/(3+x)