求微分方程(3X*2 2xy-y*2)dx (x*2-2xy)dy=0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 12:43:18
dy/dx=(xy+3x-y-3)/(xy-2x+4y-8)=(x-1)(y+3)/(x+4)(y-2)再问:然后呢?再答:(y-2)dy/(y+3)=(x-1)dx/(x+4)已经是变量分离方程,两
x‘=dx/dy=xy+x^2y^3,同除以x^2得--x'/x^2+y/x+y^3=0,即d(1/x)/dy+y(1/x)+y^3=0.令1/x=u于是u'+yu+y^3=0,通解为u=--2(y^
令z=1/x,则dx=-x²dz代入原方程得(x²y³+xy)dy=-x²dz==>dz/dy+y/x=-y³==>dz/dy+yz=-y³
设z=1/x,则dx=(-1/z²)dz代入原方程得(2yz-y³)dy/dz=1==>dz/dy=2yz-y³.(1)现在用常数变易法解方程(1):∵dz/dy=2yz
先求dy/dx+2xy=0的解:dy/y=-2xdx,--->lny=-x^2+C=-ln(e^(x^2))+lnC=ln(C*e^(-x^2)),即y=C*e^(-x^2).然后令y=C(x)*e^
xdx+3ydy+8xy^2dx+8x^2ydy=01/2d(x^2)+3/2d(y^2)+4d(x^2y^2)=0两边积分:1/2x^2+3/2y^2+4x^2y^2=C即x^2+3y^2+8x^2
左右除以x^2,y'/x+y(1/x)'=e^(x-1/x).左边就是(y/x)',两边关于x积分就能得到y=x(右边的不定积分+C).不过e^(x-1/x)不定积分没有初等函数表示啊……是不是抄错了
注意左边可以写成(xy)'于是,原方程等价于(xy)'=x²+3x+2得xy=x³/3+3x²/2+2x+C得通解y=x²/3+3x/2+2+C/x
解法一:∵dy/dx-3xy=x==>dy/dx=x(3y+1)==>dy/(3y+1)=xdx==>ln│3y+1│=3x²/2+ln│3C│(C是积分常数)==>3y+1=3Ce^(3x
别人一般问一道题,你一下子5道?我给你个提示:1.所有5道题全部可以化成y'=f(y/x)的形式.比如5::y’=√(1-y^2/x^2)+y/x2.设y/x=uy=xuy'=u+xu',代入:u+x
令z=1/x,则dx=-x²dz代入原方程得(x²y³+xy)dy=-x²dz==>dz/dy+y/x=-y³==>dz/dy+yz=-y³
xdy+ydx-(x^2+3x+2)dx=0设dz(x,y)=xdy+ydx-(x^2+3x+2)dx∂z/∂y=x,z=xy+g(x),∂z/∂x=y
答案,X=1Y=0或者X=0Y=1再问:是求微分。不是微分方程。答案是dxdy-3^(xy)•ln3(dx•ydy•x)=0再问:求过程
这道题属于一阶微分dy/dx=3x²ydy/y=3x²dxlny=x³cy=c1e的x³次方
可以用公式法不过就本题,可以用特殊的技巧显然方程左边=xy'+y=(xy)'=右=x²+3x+2两边积分有xy=x³/3+3x²/2+2x+C所以y=x²/3+
xy'+y=xy^3(xy)'=xy*y^2令xy=u,y=u/x原式化为u'=u*(u/x)^2即du/u^3=dx/x^2两边对x积分得-1/2*1/u^2=-1/x+C1即1/(xy)^2=2/
y'+y/x=(y/x)^2令u=y/x,则y'=u+xu'u+xu'+u=u^2xdu/dx=u^2-2udu/(u(u-2))=dx/x1/2*(1/(u-2)-1/u)du=dx/x1/2*(l
再问:多谢!!!
令f(x)=x*y'f'=y'+xy''xf'=xy'+x^2y''=1f'=1/xf=lnx+c1xy'=lnx+c1y'=lnx(1/x)+c1/xy=1/2*(lnx)^2+c1*lnx+c2再