求微分方程(x y)dx xdy=0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 12:19:40
y^3dx-(1-2xy^2)dy=0y^3dx+2xy^2dy=dyy^2dx+2xydy=dy/yy^2dx+xdy^2=dy/yd(xy^2)=dlny通解xy^2=lny+C
dy/y=2xdxln|y|=x^2+C0=ln|y(0)|=Cln|y|=x^2|y|=e^(x^2)y(0)=1>0y=e^(x^2)
dy/dx=2xy/1+x^2dy/y=[2x/1+x^2]dx积分得:lny=ln(1+x²)+lnCy=C(1+x²)
dy/dx=(1+y^2)/(xy)[y/(1+y^2)]dy=dx/x两边积分得1/2[ln(1+y^2)]+c1=ln|x|+c2,c1,c2为任意常数两边都以e为底数得1+y^2=cx^2,c为
dy/dx=e^(xy)dy/e^y=e^xdx两边积分得-e^(-y)=e^x+C再问:你这样右边是e^(x+y)啊再答:噢令xy=p两边求导得y+xy'=p'y'=(p'-y)/x=(p'-p/x
∵xy"+y'=0==>xdy'/dx+y'=0==>dy'/y'=-dx/x==>ln│y'│=-ln│x│+ln│C1│(C1是积分常数)==>y'=C1/x∴y=∫C1/xdx=C1ln│x│+
先求dy/dx+2xy=0的解:dy/y=-2xdx,--->lny=-x^2+C=-ln(e^(x^2))+lnC=ln(C*e^(-x^2)),即y=C*e^(-x^2).然后令y=C(x)*e^
左右除以x^2,y'/x+y(1/x)'=e^(x-1/x).左边就是(y/x)',两边关于x积分就能得到y=x(右边的不定积分+C).不过e^(x-1/x)不定积分没有初等函数表示啊……是不是抄错了
这不是微分方程.你漏掉导数符号了或者漏掉微分符号d了.再问:没有,篇子上原题,一模一样。再答:你有没有看清楚,其中是不是有个y有个小小的一撇y'这真的不是微分方程,微分方程要含有导数或者偏导或者等价的
解法一:∵dy/dx-3xy=x==>dy/dx=x(3y+1)==>dy/(3y+1)=xdx==>ln│3y+1│=3x²/2+ln│3C│(C是积分常数)==>3y+1=3Ce^(3x
u=xy,y=u/x.y'=(xu'-u)/x^2(xu'-u)'+x^2*y=0xu''+u'-u'+xu=0u''+u=0u=Asinx+Bcosxy=A(sinx)/x+B(cosx)/x.A=
dy/dx+2xy=4xdy/dx=4x-2xy=2x(2-y)dy/(2-y)=2xdx-d(2-y)/(2-y)=dx^2-dln(2-y)=dx^2dln[1/(2-y)]=dx^2ln[1/(
分离变量经济数学团队为你解答,有不清楚请追问.请及时评价.再问:图片看不见啊再答:我再发一次再答:
该微分方程只能用级数解法
1/ydy=2xdx两边积分∫1/ydy=∫2xdxln|y|=x^2+C',y=±e^C'e^(x^2)=Ce^(x^2)
答案,X=1Y=0或者X=0Y=1再问:是求微分。不是微分方程。答案是dxdy-3^(xy)•ln3(dx•ydy•x)=0再问:求过程
楼上说的对但用分离变量法会更容易理解dy/dx=2x(2-y)dy/(2-y)=2xdx两边积分得:-ln|2-y|=x^2+c1y=2+ce^(-x^2)
xy'+y=xy^3(xy)'=xy*y^2令xy=u,y=u/x原式化为u'=u*(u/x)^2即du/u^3=dx/x^2两边对x积分得-1/2*1/u^2=-1/x+C1即1/(xy)^2=2/
再问:多谢!!!
令f(x)=x*y'f'=y'+xy''xf'=xy'+x^2y''=1f'=1/xf=lnx+c1xy'=lnx+c1y'=lnx(1/x)+c1/xy=1/2*(lnx)^2+c1*lnx+c2再