求微分方程dx dt=rx,x(0)=x0的解

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 11:56:25
求微分方程dx dt=rx,x(0)=x0的解
求微分方程 (x+y)dx+xdy=0 的通解.

(x+y)dx+xdy=xdx+(ydx+xdy)=xdx+d(xy)=0即d(xy)=-xdx两端求积分得,xy=-x^2/2+c所以,y=-x/2+c/x

求微分方程dy/dx=-x/siny的解

dy/dx=-x/siny-sinydy=xdx两边取积分cosy=ln|x|+c再问:详细些再答:囧算错了-sinydy=xdxS-sinydy=Sxdxcosy=x^2/2+c再问:要一步一步来再

求微分方程 dy/dx=(x+y)^2

变换u=x+y,则y'=u'-1,方程化为u'-1=u^2,分离变量:du/(1+u^2)=dx,两边积分:arctanu=x+C,所以u=tan(x+C),所以y=tan(x+C)-x

求微分方程 dy/dx= 10^(x+y)

dy/dx=10^(x+y)dy/dx=10^x*10^ydy/10^y=10^xdx两边分别积分得ln10^y/ln10=10^x/ln10+Cln10^y=10^x+C10^y=e^(10^x+C

求微分方程dy/dx=(1+x)y的通解

分离变量法dy/y=(1+x)dx,两边积分,得ln|y|=x+x平方/2+C,整理得y=Ce的(x+x平方/2)方

求微分方程 dy/dx=(x+y)^2 ... 要过程.

令x+y=u则dy/dx=(du/dx)-1=u^2分离变量du/(1+u^2)=dx两边积分∫du/(1+u^2)=∫dx得arctanu=x+C得通解arctan(x+y)=x+C

求微分方程dy/dx=(x+y)/(x_y)的通解

dy/dx=(x+y)/(x-y)x+y=u,x-y=ty=(u-t)/2x=(u+t)/2dy/dx=(du+dt)/(du-dt)=u/tudu-udt=tdu+tdtudu-tdt=udt+td

求微分方程xdy/dx+y=xe^x的通解

xdy/dx+y=xe^xxy'+y=xe^x(xy)'=xe^x两边对x积分得xy=∫xe^xdx=xe^x-∫e^xdx=xe^x-e^x+C即xy=xe^x-e^x+C

求微分方程(dy/dx)+y=e^-x的通解

特征方程r+1=0r=-1通解y=Ce^(-x)设特解y=axe^(-x)y'=ae^(-x)-axe^(-x)代入原方程得ae^(-x)-axe^(-x)+axe^(-x)=e^(-x)解得a=1因

求微分方程y'=x/y+y/x的通解

y/x=ty=txy'=t+x*dt/dx=t+1/tx*dt/dx=1/ttdt=dx/x然后再算

matlab求解微分方程dx/dt=rx(1-x/k)并画图?x(0)=x0

function[]=yourquest(r,k,x0)f=@(t,x)r*x./(1-x/k);[t,y]=ode45(@(t,x)f(t,x),[010],x0);plot(t,y);输入你的r,

特殊法测电阻求Rx表达式Rx=?

滑动变阻器先跳到o,计算电压,再跳到最大,再计算电压,电路两边电压相等Rx*I1=(Rx+Rp)*I2

怎么用matlab微分方程dx/dt=rx(1-x/m)

这是logistic微分方程吧很好解的啊!书上都给了通解的,用matlab不需要用ode45symsrmx>>dsolve('Dx=r*x*(1-x/m)')ans=m0-m/(exp(-m*(C3+

求微分方程xy'-y=e^(x-1/x)

左右除以x^2,y'/x+y(1/x)'=e^(x-1/x).左边就是(y/x)',两边关于x积分就能得到y=x(右边的不定积分+C).不过e^(x-1/x)不定积分没有初等函数表示啊……是不是抄错了

求微分方程y'+y/x=1/x通解.急.

答:原方程可以写成:dy/dx=(1-y)/x即dy/(1-y)=dx/x两边积分,有:-ln|1-y|=ln|x|+lnC即ln|1/(1-y)|=ln|Cx|所以1/(1-y)=Cxy=1-1/C

求微分方程 x*dy/dx=y*ln(y/x) .

y=xe^(Cx+1),C为任意常数详细过程点下图查看

高数问题微分方程求微分方程dy÷dx+2xy=4x的通解,

楼上说的对但用分离变量法会更容易理解dy/dx=2x(2-y)dy/(2-y)=2xdx两边积分得:-ln|2-y|=x^2+c1y=2+ce^(-x^2)

高数中微分方程求解求微分方程y'cos^2x+y-tanx=0的通解

方程化为y'+1/cos^2x*y=tanx/cos^2x∫dx/cos^2x=tanx∫-dx/cos^2x=-tanxe^(∫dx/cos^2x)=e^(tanx)e^(∫-dx/cos^2x)=