求微分方程dy dx 2y=e^x的通解,并求满足所给初始条件y(0)=1的特解

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 01:04:46
求微分方程dy dx 2y=e^x的通解,并求满足所给初始条件y(0)=1的特解
几道微积分题目!1.求微分方程y'=y ln y的通解.2.求微分方程3e^x tan y dx+(2-e^x)(sec

y'=ylnydy/(ylny)=dx两边积分得lnlny=x+C分离变量得3e^x/(2-e^x)dx=-(secy)^2/tanydy两边积分得-3ln(2-e^x)=-lntany+C分离变量得

求微分方程dy/dx-2y/x=x^2e^2的通解

可以应用常数变异法,或者直接套用一阶微分方程的通解公式来做  该非齐次微分方程对应的齐次方程为:  dy/dx-2y/x=0  它的通解很容易求出,为  y=Cx^2(其中C为常数)  于是可以设非齐

求微分方程dy/dx+(1/x)y=e^x/x的通解

设P=1/x,Q=e^x/x直接上伯努利方程的求解公式,y=e^(∫-pdx)(∫Qe^(∫pdx)dx+C)=(1/x)(∫(e^x/x)xdx+C)=(1/x)(e^x+C)所以y=(e^x+C)

求微分方程dy/dx=e^(y/x)+y/x通解~!急~!

令y/x=u,则dy/dx=u+xdu/dx所以u+du/dx=e^u+ue^(-u)du=dx两边积分:-e^(-u)=x+Ce^(-y/x)=-x+C-y/x=ln(-x+C)y=-xln(-x+

求微分方程(dy/dx)+y=e^-x的通解

特征方程r+1=0r=-1通解y=Ce^(-x)设特解y=axe^(-x)y'=ae^(-x)-axe^(-x)代入原方程得ae^(-x)-axe^(-x)+axe^(-x)=e^(-x)解得a=1因

求微分方程 e^(x+y)dy=dx;

e^x*e^ydy=dxe^ydy=e^(-x)dx积分:e^y=-e^(-x)+Cy=ln[C-e^(-x)]

高数题 求微分方程通解.y''-3y'+2y=e^x(1+e^2x)

特征方程r²-3r+2=0得r=1,2齐次方程通解y1=C1e^x+C2e^2x方程右边为e^x+e^3x设特解为y*=axe^x+be^3x则y*'=a(1+x)e^x+3be^3xy*"

求微分方程y'=e^(2x-y)的通解

y'=e^(2x)/e^ye^ydy=e^(2x)dxe^y=(1/2)e^(2x)+Cy=ln[(1/2)e^(2x)+C]

求微分方程的通解 dy/dx=e^(2x+y) [1/2(e^2x)]+e^y=c

dy/dx=e^(2x+y)即dy/dx=e^(2x)*e^y分离变量得e^(-y)dy=e^(2x)dx两边积分得到-e^(-y)=1/2e^(2x)+C1移项便得结论

求微分方程xy'-y=e^(x-1/x)

左右除以x^2,y'/x+y(1/x)'=e^(x-1/x).左边就是(y/x)',两边关于x积分就能得到y=x(右边的不定积分+C).不过e^(x-1/x)不定积分没有初等函数表示啊……是不是抄错了

求微分方程y''-3y'+2y=x(e^x)的通解

通解为:Ce^x+De^(2x)-x(x/2+1)e^x其中C,D为任意实数由题意知特征方程为:λ²-3λ²+2=0,故λ=1或2故可设特解为:x(ax+b)e^x将其代入原方程解

求微分方程y’=1/(x+e^y)的通解!

将方程变形:y'*e^y=1-xy'再变形:(e^y)'=(x-xy+y)'e^y=x-xy+y+C(常数)下面自己解吧.

y=e^2x微分方程的解怎么求?

y‘=e^2x,两边积分得:y=e^2x/2+C

求微分方程y''-y'+2y=e^X通解

特征方程R^2-R+2=0,特征方程的解为R1=-1,R2=2;微分方程特解为C1e^(-x)+C2e^(2x);特解为1/2e^x;通解为y=C1e^(-x)+C2e^(2x)+1/2e^x;C1,

求微分方程xy'+(1-x)y=e^(2x)(0

xy'+(1-x)y=e^(2x)xy'+y-xy=e^(2x)(xy)'-xy=e^(2x)特征方程r-1=0因此齐次通解是xy=Ce^x设非齐次特解是xy=ae^(2x)(xy)'=2ae^(2x

求微分方程xy'-2x²y=x³e^(x²)的通解

y'-2xy=x^2e^(x^2)[ye^(-x^2)]'=x^2ye^(-x^2)=(1/3)*x^3+C再问:有其他解法吗?看不懂再答:这么解最简单a,等式两侧同除以xe^(x^2)y'e^(-x

求微分方程通解 y'' + a^2*y = e^x

是2阶常系数非齐次线性微分方程,特征方程r^2+a^2=0,特征根r=±ai,可设特解y=Ae^x,代入微分方程得A=1-a^2,则微分方程的通解是y=C1cosx+C2sinx+(1-a^2)e^x

求微分方程y'-e^(x-y)+e^x=0的通解

y'=e^x[e^(-y)-1]dy/[e^(-y)-1]=e^xdxd(e^y)/(1-e^y)=e^xdx积分:ln|1-e^y|=e^x+c1得:1-e^y=ce^(e^x)

求微分方程的通解 {[e^(x+y)]-e^x}dx+{[e^(x+y)]+ey}dy=0 答案是(e^x+1)(e^y

[e^(x+y)-e^x]dx+[e^(x+y)+e^y]dy=0(e^y-1)de^x+(e^x+1)de^y=0de^x/(e^x+1)+de^y/(e^y-1)=0dln(e^x+1)+dln(