求微分方程dy dx y x=a(lnx)y^2的通解
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 00:18:48
由y'+3y=0,变成dy/y=-3xdx,积分后得y=ce^(-3x)c为常数令y=u(x)[e^(-3x)],(1)则y'=u'(x)[e^(-3x)]-3u(x)[e^(-3x)](2)将(1)
symsxya;>>dsolve('Dy=-2*x*y/(x^2+2*a)','x')ans=C1/(x^2+2*a)我这里运行没错,你检查一下你的命令中括号等符号是否有问题,是否有输成全角的情况.另
我觉得你们都在浪费楼主的时间,就让我来解答这个问题吧:这是个不显含x的二阶方程.令p=y'那么原方程变成:pdp/dy=y把它们分开分别积分:pdp=ydyp^2/2=y^2+C1即:p^2=y^2+
u=xy,y=u/x.y'=(xu'-u)/x^2(xu'-u)'+x^2*y=0xu''+u'-u'+xu=0u''+u=0u=Asinx+Bcosxy=A(sinx)/x+B(cosx)/x.A=
前两天刚回答了一个类似的问题:再问:非常感谢你,那个问题也是我发的,但我处理二阶就不会了,失败了。听同学说没有解析解,想问下怎么写二阶形式的求解,只要ODE45的方法就行了,别的不麻烦您了再答:>>o
∵y'=2y+3e^(2x)(C2cos(3x)-C1sin(3x)).(1)y''=2y'+6e^(2x)(C2cos(3x)-C1sin(3x))-9y.(2)∴把(1)式×(-2)+(2)式,得
请给悬赏分再解释,谢谢
微分方程就是其通解啊.如果要求带有初值的微分方程的解,只需要把初值代入通解,解出未知的常数c1,c2等等,就行了.
你右边写的是错的,倒数第二行积分的结果就应该是你左边的式子啊,没有2
(dy)/(dx)+(y/x)=(alnx)y^2除以y^2:y'/y^2+(1/xy)=alnx设1/y=z-y'/y^2=z'代入:z'-z/x=-alnxz=x(C-∫alnxdx/x)=x(C
∵y''+2y'^2/(1-y)=0==>y'dy'/dy-2y'^2/(y-1)=0==>y'[dy'/dy-2y'/(y-1)]=0∴y'=0.(1)dy'/dy-2y'/(y-1)=0.(2)∵
二阶微分方程求通解.特征方程a²+4=0,两特征根是±2i,则通解形式是C1cos2x+C2sin2xY=C1cos2x+C2sin2x(C1,C2为不同时为0的常数)
是2阶常系数非齐次线性微分方程,特征方程r^2+a^2=0,特征根r=±ai,可设特解y=Ae^x,代入微分方程得A=1-a^2,则微分方程的通解是y=C1cosx+C2sinx+(1-a^2)e^x
传递函数Uo(s)/Ui(s)=[R1LCs^2+(L+R1R2C)s+R2]/[R1LCs^2+(L+R1R2C)s+R1+R2],电路的传递函数比较好写,不用写微分方程也可以比较容易得出,如果一定
楼上说的对但用分离变量法会更容易理解dy/dx=2x(2-y)dy/(2-y)=2xdx两边积分得:-ln|2-y|=x^2+c1y=2+ce^(-x^2)
方程化为y'+1/cos^2x*y=tanx/cos^2x∫dx/cos^2x=tanx∫-dx/cos^2x=-tanxe^(∫dx/cos^2x)=e^(tanx)e^(∫-dx/cos^2x)=
dy/(a-by)=dx两边积分(-1/b)*ln|a-by|=x+lnC'ln|a-by|=-bx+lnCa-by=C*e^(-bx)y=[a-C*e^(-bx)]/