求微分方程y=10的x y次方的通解

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 23:35:05
求微分方程y=10的x y次方的通解
求微分方程dy/dx=y^2/(-x+2xy+y^2)的通解

令u=x/y,则dx/dy=u+ydu/dy原式化为u+ydu/dy=-u/y+2u+1(即变量y因变量u的一次线性非齐次方程)整理得du/dy-(1/y^2-1/y)u=1/y先求齐次方程du/dy

求下列一阶线性微分方程的通解:y'-y=xy^5

令z=1/y^4,则y'=-y^5z'/4代入原方程,化简得z'+4z=-4x.(1)∵方程(1)是一阶线性微分方程∴由一阶线性微分方程求解公式,得方程(1)的通解是z=1/4-x+Ce^(-4x)(

求微分方程y'=(1+y^2)/xy的通解

dy/dx=(1+y^2)/(xy)[y/(1+y^2)]dy=dx/x两边积分得1/2[ln(1+y^2)]+c1=ln|x|+c2,c1,c2为任意常数两边都以e为底数得1+y^2=cx^2,c为

求微分方程y'-xy=e的二分之一的x平方通解

求积分因子M(x)=e^∫(-x)dx=e^(-x^2/2)两边乘M(x),得(y'-xy)e^(-x^2/2)=1[y*e^(-x^2/2)]'=1y=(x+C)e^(x^2/2).

求微分方程(xy^2-x)dx+(x^2y+y)dy=0的通解

(xy^2-x)dx+(x^2y+y)dy=0xy^2dx-xdx+x^2ydy+ydy=0xy^2dx+x^2ydy-xdx+ydy=02xy^2dx+2x^2ydy-2xdx+2ydy=0注意:d

微分方程y'=xy+x+y+1的通解是?

dy/dx=xy+x+y+1dy/dx=(x+1)(y+1)分离变量dy/(y+1)=dx*(x+1)两边积分ln(y+1)=(x²/2)+x+lnC两边取以e为底的幂y+1=Ce^[(x&

求微分方程xy"+y'=0的通解

∵xy"+y'=0==>xdy'/dx+y'=0==>dy'/y'=-dx/x==>ln│y'│=-ln│x│+ln│C1│(C1是积分常数)==>y'=C1/x∴y=∫C1/xdx=C1ln│x│+

求微分方程xy'+y=x的平方+3x+2的通解,

注意左边可以写成(xy)'于是,原方程等价于(xy)'=x²+3x+2得xy=x³/3+3x²/2+2x+C得通解y=x²/3+3x/2+2+C/x

做适当变换,求微分方程xy-y[ln(xy)-1]=0的通解.

这不是微分方程.你漏掉导数符号了或者漏掉微分符号d了.再问:没有,篇子上原题,一模一样。再答:你有没有看清楚,其中是不是有个y有个小小的一撇y'这真的不是微分方程,微分方程要含有导数或者偏导或者等价的

求微分方程y"+3y+2y=e的x次方的通解

题目应该是y"+3y'+2y=e^x吧?特征方程为r^2+3r+2=0,得r=-1,-2即齐次方程的通解y1=C1e^(-x)+C2e^(-2x)设特解y*=ae^x,代入方程得:ae^x+3ae^x

求微分方程的通解x^2y''-4xy'+6y=x

设x=e^t则d^2y/dt^2-5dy/dt+6y=e^ty=C1*e^(3t)+C2*e^(2t)+1/2e^t=C1*x^3+C2*x^2+x/2再问:设x=e^t则d^2y/dt^2-5dy/

xy'+y-2y^3=0微分方程的解?

伯努利方程xy'+y=2y^3->x/y^3*y'+1/y^2=2令1/y^2=t-x/2*dt/dx+t=2解这个一阶方程得(2x^(-2)+c)*x^2

求微分方程的通解 y"-xy=0

该微分方程只能用级数解法

求微分方程x²y’=xy—y²的通解

y'=y/x-(y/x)^2设y/x=uy=xuy'=u+xu'所以u+xu'=u-u^2xu'=-u^2-du/u^2=dx/x积分得1/u=lnx+C所以x/y=lnx+C通解为y=x/(lnx+

求微分方程 xy'+y=xy^3的通解,

xy'+y=xy^3(xy)'=xy*y^2令xy=u,y=u/x原式化为u'=u*(u/x)^2即du/u^3=dx/x^2两边对x积分得-1/2*1/u^2=-1/x+C1即1/(xy)^2=2/

求微分方程xy'-2y=5x的通解,

再问:多谢!!!

1+y'=e的y次方,求微分方程的通解!

1+dy/dx=e^ydx+dy=e^y*dxdy/(e^y-1)=dx[-1+e^y/(e^y-1)]dy=dx左边对y进行积分,右边对x进行积分,得-y+ln(e^y-1)=x+c

求微分方程的通解.x^2 y"+xy'=1

令f(x)=x*y'f'=y'+xy''xf'=xy'+x^2y''=1f'=1/xf=lnx+c1xy'=lnx+c1y'=lnx(1/x)+c1/xy=1/2*(lnx)^2+c1*lnx+c2再