求微分方程的分解:dy dx-5y=e5x
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 21:19:48
常微分方程分很多种,变量可分离、齐次方程、一阶线性微分方程还有二阶的微分方程.我认为你得先把常微分方程分类,再对应用不同的公式或者变换后用公式.
方程两边求关x的导数ddx(xy)=(y+xdydx); ddxex+y=ex+y(1+dydx);所以有 (y+xdy
由微分方程dydx=2xy,得dyy=2xdx(y≠0)两边积分得:ln|y|=x2+C1即y=Cex2(C为任意常数)
含有未知函数及其导数的方程称为微分方程例如求未知函数y=y(x)其满足y”+y’+y=x要了解更多内容可参考任何一本巜常微分方程》
xy'-ylny=0→dy/dx=(ylny)/x→分离变量得:dy/(ylny)=dx/x→d(lny)/lny=d(lnx)※之所以得出这一步是因为d(lny)=dy/y※→两边积分得:∫d(ln
特征方程为t^3+t^2-t-1=0,(t-1)(t+1)^2=0,t=±1(-1为重根)所以y=C1e^x+(C2x+C3)e^(-x)再问:不会吧,和二阶的方法一样?再答:是的。。。
把y当自变量,x为因变量.方程为:x′-x=-y².这是标准的一次方程,有公式:x′+P(y)x=Q(y).通解为x=e^(-∫Pdy)[∫Qe^(∫Pdy)dy+c].现在P=-1.Q=-
y''+2y'-3y=6x+1特征方程是a^2+2a-3=0a=-3和a=1所以y''+2y'-3y=0的齐次方程的解是y=C1e^-3x+C2e^x特解的话则令特解为y=ax+b代入2a-3ax-3
直接带入通解公式就ok了.
p=y'dp/dx=1+p^2dp/(1+p^2)=dxarctanp=x+C0p=tan(x+C0)dy/dx=tan(x+C0)dy=sin(x+C0)d(x+C0)/cos(x+C0)y=-ln
太多了,不过都是用特征方程法解吧,这些都很容易的解第一个特征方程r^4-4r=0r=4,r=0通解y=C1e^(4x)+C2
一阶线性非齐次微分方程y'+p(x)y=q(x),通解为y=e^[-∫p(x)dx]{∫q(x)e^[∫p(x)dx]dx+C}用的方法是先解齐次方程,再用参数变易法求解非齐次.《高等数学》教科书上都
u=xy,y=u/x.y'=(xu'-u)/x^2(xu'-u)'+x^2*y=0xu''+u'-u'+xu=0u''+u=0u=Asinx+Bcosxy=A(sinx)/x+B(cosx)/x.A=
这是一阶线性微分方程,其中P(x)=1,Q(x)=e-x∴通解y=e−∫dx(∫e−x•e∫dxdx+C)=e−x(∫e−x•exdx+C)=e−x(x+C).
微分方程就是其通解啊.如果要求带有初值的微分方程的解,只需要把初值代入通解,解出未知的常数c1,c2等等,就行了.
1、△=p^2-4q0,特征方程有两个相异实根λ1,λ2,通解的形式为y(x)=C1*[e^(λ1*x)]+C2*[e^(λ2*x)];2、△=p^2-4q=0,特征方程有重根,即λ1=λ2,通解为y
看图:
已知微分方程的通解怎么求这个微分方程答:求导!如:1.x^2-xy+y^2=c等式两边对x求导:2x-y-x(dy/dx)+2y(dy/dx)=0故dy/dx=(2x-y)/(x-2y);或写成2x-
再问:多谢!!!