求微分方程的解(y^2-6x)*y 2y=0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 21:21:14
令y/x=u则y=xuy'=u+xu'代入得:(u-1)(u+xu')=u^2得:xu'=u^2/(u-1)-uxdu/dx=u/(u-1)(u-1)du/u=dx/xdu(1-1/u)=dx/x积分
求微分方程的解y''+4*y'+4*y=e^-2xr*r+4r+4=0解方程得r1=r2=-2y''+4*y'+4*y=0的解为y=(C1+C2*x)e^-2x-2是重根,所以,特解为y=x*x*e^
∵(y^2-6x)y'+2y=0==>(y^2-6x)y'=-2y==>(y^2-6x)dy/dx=-2y==>dx/dy=(y^2-6x)/(-2y)==>dx/dy=3x/y-y/2==>dx/d
y/x=ty=txy'=t+x*dt/dx=t+1/tx*dt/dx=1/ttdt=dx/x然后再算
y'/y=1/(1+x^2)两边积分logy=arctanx+Cy=e^(arctanx+C)或者写成Ce^(arctanx)C是任意常数
y'=e^(2x)/e^ye^ydy=e^(2x)dxe^y=(1/2)e^(2x)+Cy=ln[(1/2)e^(2x)+C]
直接降维呗y2=y1*u=xcosxuy'=(cosx-xsinx)u+xcosxu'y''=(-sinx-sinx-xcosx)u+(cosx-xsinx)u'+(cosx-xsinx)u'+xco
(1)(xy+x^3y)dy-(1+y^2)dx=0(xy+x^3y)dy=(1+y^2)dx分离变量整理得:y\(1+y^2)dy=1\x(1+x^2)dx整理:y\(1+y^2)dy=1\x-x\
本题r=1,对应二阶齐次特征方程λ^2-3λ+2=0特征根:λ1=1,λ2=2对应齐次的通解为:Y*=c1e^x+c2e^(2x)(c1、c2为常数)r=1是特征方程的一个解.设所求特解为y=cxe^
设x=e^t则d^2y/dt^2-5dy/dt+6y=e^ty=C1*e^(3t)+C2*e^(2t)+1/2e^t=C1*x^3+C2*x^2+x/2再问:设x=e^t则d^2y/dt^2-5dy/
y‘=e^2x,两边积分得:y=e^2x/2+C
再问:可不可以解释下倒数第三步怎么变成倒数第二步的再答:公式积分{X^m*(LnX)^ndx}=1/(1+m)(Lnx)^n-n/(1+m)*积分{x^m*(Lnx)^(n-1)}dx再问:我怎么不记
y'sin(y/x)-y/x*sin(y/x)+1=0令y/x=u,则y'=u+xu'所以(u+xu')sinu-usinu+1=0xu'sinu+1=0-sinudu=dx/x两边积分:cosu=l
积分因子为exp(∫-2/(1-x^2)dx)=(x-1)/(x+1)微分方程两边同时乘(x-1)/(x+1),得(x-1)/(x+1)*y'+2*y/(x+1)^2=x-1即((x-1)/(x+1)
可以用公式法不过就本题,可以用特殊的技巧显然方程左边=xy'+y=(xy)'=右=x²+3x+2两边积分有xy=x³/3+3x²/2+2x+C所以y=x²/3+
方程化为y'+1/cos^2x*y=tanx/cos^2x∫dx/cos^2x=tanx∫-dx/cos^2x=-tanxe^(∫dx/cos^2x)=e^(tanx)e^(∫-dx/cos^2x)=
令t=x+y,则y=t-x,dy/dx=dt/dx-1原方程化为(dt/dx)-1=t?p>故dx/dt=1/(t?)积分得x=arctant+C即x=arctan(x+y)+C
再问:多谢!!!
这是一个一阶的非齐次线性方程直接套公式dy/dx+y=2xP(x)=1Q(x)=2xy=e^(-x)[积分(2xe^xdx)+C]=e^(-x)[2xe^x-2e^x+C]=Ce^(-x)+2x-2
令f(x)=x*y'f'=y'+xy''xf'=xy'+x^2y''=1f'=1/xf=lnx+c1xy'=lnx+c1y'=lnx(1/x)+c1/xy=1/2*(lnx)^2+c1*lnx+c2再