求抛物线y^2=12x截直线y=2x 1所得的弦长

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 09:48:21
求抛物线y^2=12x截直线y=2x 1所得的弦长
求经过抛物线y=12x

∵抛物线y=12x2+3的顶点为A和抛物线y=12(x−2)2的顶点为B,∴A(0,3),B(2,0),设直线AB的解析式为y=kx+b,则b=32k+b=0,解得k=−32b=3.∴直线AB的解析式

求抛物线Y=X平方-3x+3与直线y=2x-1的交点

把直线y=2x-1代入抛物线方程得2x-1=x^2-3x+3x^2-5x+4=0(x-4)(x-1)=0x=4x=1y=2*4-1=7y=2*1-1=1所以交点是(4,7)与(1,1)

求抛物线y = x(x-2) 与直线y=x所围成的平面图形的面积

x(x-2)=xx=0或x-2=1x=0或x=3所以面积=∫(0,3)[x-x(x-2)]dx=∫(0,3)[-x²+3x]dx=[-x³/3+3x²/2]|(0,3)=

求抛物线y=x的平方-x-6与直线y=3x-2的交点坐标

3x-2=x^2-x-6x^2-4x-4=0x=2+根号2,y=4+3根号2x=2-根号2,y=4-3根号2

已知直线Y=2X 1被抛物线Y^2=2px截得的弦长为根号15,求抛物线方程.

设抛物线方程为y2=2px,和直线两交点为A(x1,y1),B(x2,y2),k=kAB=2y=2x+1代入y2=2px得4x2+(4-2p)x+1=0,∴x1+x2=(p/2)-1,x1x2=1/4

已知直线y=x-2与抛物线y

将y=x-2与y²=2x联立消去x得:(x-2)²=2x,x²-6x+4=0,设A(x1,y1),B(x2,y2).则x1+x2=6,x1x2=4.则x1x2+y1y2=

求抛物线y=x^2上一点P到直线l:x-y-2=0的最短距离

先把图做出来直线l的图做出来,交X轴于A(2,0)点,交Y轴于C(0,-2),Y=x^2最低点为y=0,x=0.过0点做0B垂直于直线I于B点,∵∠ABO=90°∴三角形AOB为RT三角形∵AO=2,

直线y=1-x交抛物线

解题思路:本题考查直线与圆锥曲线的关系,解决的关键在于联立方程,利用韦达定理,与条件“向量OM+ON与弦MN交于点E,若E点的横坐标为3/2”结合来解决问题,属于难题.解题过程:同学你好,如对解答还有

求抛物线y^2=2x与直线y=4-x围成平面图形的面积?

1.先求抛物线与直线的交点y^2=2xy=4-x(4-x)^2=2xx^2-10x+16=0x1=2y1=4-2=2点(2,2)x2=8y2=4-8=-4点(8,-4)2.再求积分y积分范围从-4到2

求抛物线y=x²+7x+3与直线y=2x+9的交的坐标

x²+7x+3=2x+9,得x1=-6,x2=1,代入任一曲线方程,得交点坐标(-6,-3)(1,11)再问:如何解x²+7x+3=2x+9?再答:移项x²+5x-6=0

求抛物线y^2=2x与直线y=4-x围成的平面图形面积

在平面坐标系中画出此图像.然后将X轴改成Y轴,将Y轴改成X轴.此时,抛物线的解析式变为y=(x^2)/2,直线方程变为y=x+4.那就变成了比较常见的求曲边梯形的题目了.先求抛物线与直线的交点,向此时

求抛物线Y^2=2X与直线Y=4-X所围图形的面积

先求交点x=y^2/2=y+4y^2-2y-8=0(y-4)(y+2)=0y=4,y=-2x=y+4所以交点(8,4),(2,-2)围成的图形有一部分在x轴下方其中0≤x≤2,x轴下方的抛物线是y=-

抛物线关于直线对称求y^2=4x关于y=x+1的抛物线方程!

y^2=4x于y=x+1的方程简便算法:将y=x+1,x=y-1带入方程y^2=4x就得出来了即y=(x^2+2x+2)/4

求抛物线y等于x平方减x减2与直线y=2x-1的交点坐标

y=x^2-x-2y=2x-1x^2-x-2=2x-1x^2-3x-1=0(x-3/2)^2=9/4+1=13/4x=3/2(+/-)根号13/2y=2(+/-)根号13即交点坐标是(3/2+根号13

已知抛物线y=2x平方和直线y=4x (1)求此抛物线与直线所围成图形的面积

(1)由y=2x²,y=4x消y得x=0或x=2故面积s=∫(0--2)4x-2x²dx=2x²-(2/3)x³|(0--2)=8/3(2)设直线方程为y=4x

已知抛物线²=12x与直线y=2x+1交于A,B两点,求|AB|?

∵y=2x+1,∴x=(y-1)/2将x=(y-1)/2代入y²=12x中,得:y²=6(y-1)即:y²-6y+6=0设A(x1,y1),B(x2,y2),则y1+y2

抛物线顶点在原点 焦点在X轴这个抛物线截直线2X-Y-4=0得弦长3倍根号5 求抛物线~

设抛物线解析式是y^2=2px.y=2x-4代入得:4x^2+16-16x=2px2x^2-(8+p)x+8=0x1+x2=(8+p)/2x1x2=4(x1-x2)^2=(x1+x2)^2-4x1x2

已知抛物线y^2=-4x,直线y=2x+1,求直线被抛物线所截得弦长

y²=-4xy=2x+1(2x+1)²+4x=04x²+8x+1=0两根之和=-2两根之积=1/4两根之差=根号下(4-1)=根号下3y²+2(y-1)=0y&