求旋转体的体积y=根号x-1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 23:09:36
绕Ox轴旋转一周所得图形体积为[π*(√x)2]在区间[0,2]上的积分,结果为2π.绕Oy轴旋转一周所得图形体积为[π*(2-y^2)^2]在区间[0,√2]上的积分.结果自已算吧.
y=x^2-1(a=1,b=0,c=-1)对称轴为:x=0最小值为-1.求抛物线y=x^2-1与X轴所围成的平面图形绕y轴旋转一周所得旋转体体积Vy底为半径为1的圆,高为1可以通过两种方式用定积分求.
先求交点为(1,2)和(1,-2)该图形关于x轴对称,体积V=2π∫(0,2)[(5-y^2)^2-1]dy=832π/15
y = √xy = 2 - x√x = 2 - x平方:x² - 5x
答:x=5±√(16-y^2)且关于x轴对称,所以V=2π∫0到4[(5+√(16-y^2))^2-(5-√(16-y^2))^2]dy=2π∫0到420√(16-y^2)dy=40π∫0到4√(16
设a,b,c为旋转体的各个半径则绕x轴和y轴旋转产生的旋转体体积分别为V=4/3*兀*abc=2/27*兀,1/9*兀
绕X轴的旋转体的体积:Vx=2∫(2,0)πy^2(x)dx=4π∫(2,0)(6-3x^2/2)dx &
V=∫{x=1→9}πy²dx=∫{x=1→9}πxdx=π/2*x²|{x=1→9}=π/2*(9²-1)=40π
我来回答一下,马上上图.再答:
方程整理:x1=y²/4x2=1建立微分:在y=y处,dVy=π(x2²-x1²)dy=π[1²-(y²/4)^2]dy∴Vy=∫【-2,2】{π[1
x=1,y=ax=0,y=0V=∫[0,1]πy^2dx=∫[0,1]π(ax^n)^2dx=πa^2/(2n+1)*x^(2n+1)[0,1]=πa^2/(2n+1)再问:没看懂..第一问是要求体积
面积=1/2AOB+积分(x:1->+无穷)1/xdx=1/2+lnx(1->+inf)不存在(x是否有上界?)再问:??再答:积分不存在再问:不对,,,答案不是这样的再答:y=1/x,y
解法一:所求体积=2∫2πx√[16-(x-5)²]dx=4π∫x√[16-(x-5)²]dx=4π∫(4sint+5)*4cost*4costdt(令x=4sint+5)=64π
再答:亲,如果觉得我的答案满意,给个采纳吧!
y=x^2和x=1相交于(1,1)点,绕X轴旋转所成体积V1=π∫(0→1)y^2dx=π∫(0→1)x^4dx=πx^5/5(0→1)=π/5.绕y轴旋转所成体积V2=π*1^2*1-π∫(0→1)
哎,一条是横线,一条是竖线,一条是自然对数曲线.干脆套用积分公式就可以啦.当它绕着x轴旋转时,被积函数是y的平方.上限为x=e^2,下限为x=e.如图.当它绕着y轴旋转时,方法相同.最好是自己完成哈.
0到1积分∫∏(2X+1)平方dx答案为:2∏用微元法,切成一个个小的圆柱体,即可.
V=2π∫(0,1)2x^2dx=2π*2/3x^3︱(0,1)=4/3π
/>y=x²与y=√x联立得交点x1=0,x2=1,S=∫【0到1】(√x-x²)dx=(2/3x^3/2-1/3x^3)|【0到1】=2/3-1/3=1/3,V=∫【0到1】π[
积分符号0—4√xdx-1/2x2x2=10/3(πx积分符号0—4xdx)-1/3xπx4x2=16π/3