求曲线x=t,y=t^2,z=t^3

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 05:25:01
求曲线x=t,y=t^2,z=t^3
高数 求曲线x=2t,y=t²,z=t³在点(2,1,1)处的法线与切平面

切线与法平面?可以看到,该点处,参数t=1,在该点处将x,y,z分别对t求导可得切线方向向量为(2,2,3),这也是法平面的法向量.切线:(x-2)/2=(y-1)/2=(z-1)/3;法平面:2*(

三维曲线 曲率如果一条曲线方程为:x=x(t),y=y(t),z=z(t);则曲线的曲率如何求?请尽量详细点.

***楼主看这里,不是复制粘贴的哦***第一步:分别求导,得到x'(t)y'(t)z'(t)第二步:分别求2阶导,得到x''(t)y''(t)z''(t)第三步将三个一阶导合在一起看做一个三维矢量r'

计算I=∫T(x^2+y^2+z^2)ds其中T为曲线{x^2+y^2+z^2=a^2,x+y+z=0

曲线积分中积分曲线的方程是可以带人到积分表达式中的,因此I=∮a^2ds=a^2∮ds,而根据曲线积分的几何意义,∮ds就等于积分闭曲线的周长,由曲线的方程知积分曲线为半径等于a的圆周,其周长∮ds等

曲线曲线x=e^2t.y=2t z=-e^(-3t)在对应于t=0处的切线方程为

这个是切平面,再问:你没有正面回答这个问题。

求曲线x=t y=t^2 z=t^3在t=2处的切线方程和法平面方程.

(x-2)/1=(y-4)/4=(z-8)/12(x-2)+4(y-4)+12(z-8)=0.直接微分可出导数,然后得到答案

求曲线x=t,y=t的平方,z=t的三次方上的点,使该点的切线平行于平面x+2y+z=4.

平面的法向量是(1,2,1)设该点是(t,t^2,t^3),则切线向量是(1,2t,3t^2),与平面法向量垂直,则1+2*2t+3t^2=0,t1=-1,t2=-(1/3).所以该点是(-1,1,-

求曲线x=1,y=t,z=t^2 在t=1处的切线方程及法平面方程

x'(t)=0y'(t)=1z'(t)=2t|(t=1)=2t=1,x=1,y=1,z=1切线方程(x-1)/0=(y-1)/1=(z-1)/2法平面方程0(x-1)+1*(y-1)+2(z-1)=0

求曲线x=t^2,y=t,z=3(t-1)上对应于t=1的点处的切线方程和法平面方程

本题是高等数学问题分别对xyz关于t求导,可得2t,1,1所以可以求出切线方程为2t/(x-2)=1/(y-1)=1/z所以切线方程为0=2t(x-2)+1(y-1)+1z选我啦,不懂再问,我打了很久

若空间曲线的参数方程为x=a(t),y=b(t),z=(t),

本题应该是少了一个小前提:M在空间曲线上,并且对应于参数t=t0还有就是少打了z=c(t)设点M对应曲线在M点处的切线方程:(x-x0)/a′(t0)=(y-y0)/b′(t0)=(z-z0)/c′(

已知x,y,z,t,满足方程组x+y+z=6,2x-z+t=-2,y+z+t=4,x-2y+t=-4,求想,x,y,z,

你好:x+y+z=6为①2x-z+t=-2为②y+z+t=4为③x-2y+t=-4为④由(3)加②得2x+2t+y=2(5)把④*2得2x-4y+2t=-8(6)(5)-(6)得到由(2x+2t+y)

空间曲线的曲率公式曲线r=(x(t),y(t),z(t)),有的地方写曲率k=|r'×r"|/(|r'|)^(3/2),

二者都对,对于曲线的参数方程,可以以很一般的一个量t作为参数(如曲线切线与x轴的夹角等),也可以以弧长s为参数,对于以弧长为参数的参数方程,表征曲线特征的量大多有形式比较简单的公式,就像你说的曲率k=

求曲线x=t,y=t^2,z=t^3上与平面x+2y+z=1平行的切线方程

平面x+2y+z=1的法线方向{1,2,1}曲线x=t,y=t^2,z=t^3在t的切线方向{1,2t,3t²}.平面‖切线↔法线⊥切线.∴平面‖切线↔1*1+2*2

求曲线x=t/(1+t),y=(1+t)/t,z=t^2.在点(1/2,2,1)处的切线与法平面方程

点(1/2,2,1)处:t=1导数x`=1/(1+t)^2=1/4,y`=-1,z`=2切线方程4(x-1/2)=-(y-2)=(z-1)/2与法平面方程(x-1/2)/4-(y-2)+2(z-1)=

求出曲线x=t,y=t,z=t3,使在该点的切线平行于平面x+2y+z=4

曲线x=t,y=t^2,z=t^3的切线斜率(求导)x=1,y=2t,z=3t^2切线平行于平面x+2y+z=4,切线斜率与平面的法向量点积为01*1+2t*2+3t^2*1=0t=-1或-1/3,代

13.曲线x=t,y=t^2,z=t^2上的点(2,4,4)处的切向量T= _____

先计算导数为0的点.f(x)'=3x^2+6x=x(6+3x)x=0x=-2为导数为零点.x=0代入f(x)=0x=-2代入f(x)=4另外x=-5x=5分别代入f(-5)=-50f(5)=200极值

设Γ为曲线x=t,y=t^2,z=t^3上相应于t从0变为1的曲线弧.第二类曲线积分∫P(x,y,z)dx+Q(x,y,

T=(x',y',z')=(1,2t,3t^2)所以,三个方向余弦分别为cosα=1/√(1+4t^2+9t^4)cosβ=2t/√(1+4t^2+9t^4)cosγ=3t^2/√(1+4t^2+9t

曲线x=t,y=-t^2,z=t^3的所有切线与平面z+2y+x=4平行的切线?

选B  先求曲线x=t,y=-t^2,z=t^3的切向量,就是对曲线方程求导所得,即  x=1,y=-2t,z=3t^2  切线平行于平面z+2y+x=4,即就是曲线切向量与平面的法向量之积为0,即 

求曲线x=t,y=t平方,z=t立方,在点(1,1,1)处的切线及法平面方程

x=t,y=t平方,z=t,分别对t求导,得x'=1,y'=2t,z'=3t平方,把t=1分别代入其中得在点(1,1,1)处的切线的方向向量即法平面的法向量(1,2,3),在点(1,1,1)处的切线的

求曲线积分∫(x+y)ds,其中L为曲线弧x=t,y=t^3,z=3t^2/√2(0<t<1)

尻,这么容易,照代不就行咯ds=√[(dx)^2+(dy)^2+(dz)^2]