求曲线x=acost的立方,y=asint的立方所围成图形的面积
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 12:12:29
φ(t)=acost,ψ(t)=bsint,φ'(t)=-asint,ψ'(t)=bcost,φ"(t)=-acost,ψ"(t)=-bsint,φ'3(t
πab再问:详细过程有没有啊?再答:有再答:再答:4.3.3题
1在xoy平面,为:x^2+y^2=a^2‘;2在xoz平面为:x=acos(z/b);3在yoz平面为:y=asin(z/b);
dx/dt=-3acos²tsintdy/dt=3asin²tcost所表示的函数的一阶导数dy/dx=(dy/dt)/(dx/dt)=(3asin²tcost)/(-3
dy/dt=bcostdx/dt=-asintdy/dx=-(b/a)*cottd^2y/dx^2=d(dy/dx)/dx={d(dy/dx)/dt}/(dx/dt)=(b/a)*csc^2t/-as
y'=2x+3x^2设切点坐标为(m,m^2+m^3)则切线斜率=2m+3m^2联立点(1,2)有:斜率=(m^2+m^3-2)/(m-1)=2m+3m^2解得:m=1,或-1由于m≠1所以斜率=1所
y=x3y'=3x^2y'(1)=3即在(1,1)处的切线斜率=3切线方程y-1=3(x-1)y=3x-2法线的斜率=-1/3法线方程y-1=-(x-1)/3
y=x^3-5x^2+3x+5y`=3x^2-10x+3y``=6x-10=0x=5/3
代入就可以了.=积分(从0到2pi)(asint*(-asint)+bt*(acost)+acost*b)dt=积分(从0到2pi)(abcost+abtcost-a^2sin^2t)dt=2pi*(
x对t求导得dx=-asintdty对t求导得dy=bcostdtdx/dy=-asintdt/bcostdt=-a/b*tantdx=-a/b*tantdy
x对t求导dx=-asintdty对t求导dy=bcostdt2式相比得dx/dy=-asintdt/bcostdt=-a/btantdx=-a/btantdy不会错的应为(常数乘以表达式)整体的导数
2x-6y+1=0斜率是1/3所以所求直线斜率是-3y=x³+3x²-5y'=3x²+6x所以斜率k=y'=3x²+6x=-33(x+1)²=0x=-
y-x^3=0过(2.0,8.0)的切线为(x-2.0)(-2.0^2)+(y-8.0)=0平面曲线f(x,y)=0过(x0,y0)的切线为fx(x0,y0)(x-x0)+fy(x0,y0)(y-y0
dy/dt=bcostdx/dt=-asintdy/dx=-b/acot(t)=-b/acot45=-b/a所以直线等于y-(根2/2)b=-b/a(x-(根2/2)a)
y'=3x²-3y'(1)=3-3=0所以切线为y=-2
y`=dy/dx=(dy/dt)/(dx/dt)=(bcost)/(-asint)y``=d(dy/dx)/dx=[d(dy/dx)/dt]/(dx/dt)=[(bcost)/(-asint)]`/(
(X-y)的平方=1=x方+y方-2xyx2+y2=4所以2xy=3xy=2/3x立方*y立方=(xy)立方=8/27(x+Y)的平方=X方+Y方+2XY=4+2/3=4又2/3
所求质量M=∫[0,2π]|bsint|√[(-asint)²+(bcost)²]dt=∫[0,2π]|bsint|√[a²+(b²-a²)cos
我算的有点急,你还是检查一下吧...再问:谢谢,很有帮助再问:再问:这个是什么