求极限h→0时∫(x-h→x h)cost²dt h的极限洛必达.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 11:51:37
[f(x0+h)-f(x0-h)]/2h=[f(x0+h)-f(x0-h)]/[(x0+h)-(x0-h)]所以lim(h→0)(f(x0+h)-f(x0-h))/2h=f'(x0)
你在分子上减一个f(x)再加一个f(x)剩下的你应该会了吧
=-f(x)′因为导数的定义是△x→0时f(x)′=(f(x+△x)-f(x))/△x而这道题只要令△x=-h结果自然就是=-f(x)′
=3·lim(h→0)(f(x)-f(x+3h))/(3h)令t=3h,则该极限=-3·lim(t→0)(f(x+t)-f(x))/t=-3·lim(t→0)(f(x+t)-f(x))/(t-0)=-
f在x处连续即可再问:您好,那么如果换成一阶导数,只要这个导函数在x处连续还是limf'(x+2h)=f'(x),对吗?那么图中画线处的式子可以等于f"(x+h)吗?再答:换
h趋向于0,(x+h)的平方-x的平方/h的极限即为y=x^2在该点的导数,即2x,lim(x+h)的平方-x的平方/h=2x
limh趋向0[(x+h)^3—x^3]/h=limh趋向0[3x^2*h+3x*h^2+h^3]/h=limh趋向0(3x^2+3xh+h^2)=3x^2
lim[h→0][f(a-h)-f(a+2h)]/h=lim[h→0][f(a-h)-f(a)+f(a)-f(a+2h)]/h=lim[h→0][f(a-h)-f(a)]/h+lim[h→0][f(a
首先,可以很快得出f(0)=0因为h趋于0时,f(h^2)/h^2的极限等于1,即极限存在.而分母趋于0,所以分子又函数f(x)在x=0处连续,所以令x=h^2,由于x=h^2>0,所以h→0时
第一题是分子分母同时乘上根号(1+h)+1,分子成了h,分母是h*(根号(1+h)+1),约去h,得1/(根号(1+h)+1)代入h=0,得1/2.第二题分子是(x+1)^2,分母是(x+1)(x-1
利用三角函数和差化积公式sin(x+h)-sinx=2cos(x+h/2)sinh/2则h→0时,lim[sin(x+h)-sinx]/h=lim2cos(x+h/2)sinh/2/h注意到h→0时,
过程是这样:={[f(x+h)-f(x)]/h-[f(x)-f(x-h)]/h}/h=[f'(x)-f'(x-h)]/h=f''(x-h)=f''(x),h->0
新年好!HappyChineseNewYear!1、本题是考查对导数的概念理解题;2、根据导数的定义,第一题可以分成两部分;3、导数的定义式的本质是无穷小比无穷小型不定式, &n
={[f(x_0+h)-f(x_0)]/h+[f(x_0)-f(x_0-h)]/h}/5=[f'(x_0)+f'(x_0)]/5=2/5*f'(x_0)---------或者直接洛必达=[f'(x_0
f'(x)的定义是lim(h→0)[f(x+h)-f(x)]/h=f'(x)所以lim(f(x+2h)-f(x-3h))/h=lim[(f(x+2h)-f(x))+(f(x)-f(x-3h))]/h=
h→0lim[ln(x+h)-ln(x)]/h=lim(1/h)*ln(1+(h/x))=lim(1/x)*(x/h)*ln(1+(h/x))=(1/x)*lim(x/h)*ln(1+(h/x))=(
lim(h→0)[f(a+3h)-f(a-h)]/2h=2lim(4h→0)[f(a-h+4h)-f(a-h)]/4h=2lim(h→0)f'(a-h)=2f'(a)再问:可以解释一下吗?我不太清楚。