求极限lim n趋向于无穷(1 n)*n次方根下(n 1)(n 2)⋯(n n)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 01:15:00
分子有一晔lim(n→+∞)[√(n^2+n)-n]=lim(n→+∞)[√(n^2+n)-n][√(n^2+n)+n]/[√(n^2+n)+n]=lim(n→+∞)n/[√(n^2+n)+n]=1/
结果是无穷大,证明如下图:
1.注意到每次上面求导之后会出一个cos2x,这个东西在x->0是极限是1,所以可以扔掉下面的过程中x->0就不写了,逐次求导lim(sin^4(2x)/x^3)=lim(8sin^3(2x)/6x^
任意给定e>0,要使得In^(2/3)sinn/(n+1)-0I
设y=[√(n^2+1)/(n+1)]^nlny=nln[√(n^2+1)/(n+1)]=n[1/2ln(n^2+1)-ln(n+1)]lim(n→∞)lny=lim[1/2ln(n^2+1)-ln(
分子有理化=[√(n^2+n)-n][√(n^2+n)+n]/[√(n^2+n)+n]=(n^2+n-n^2)/[√(n^2+n)+n]=n/[√(n^2+n)+n]上下除以n=1/[√(1+1/n)
应该是开n次根号用夹逼定理3^n3n→+∞,n次根号2极限为1两边极限都是3所以原式=3
lim(2^n-3^n)/4^n=lim(1/2)^n-lim(3/4)^n=0-0,因为1/2
证明:limn【1/(n^2+π)+1/(n^2+2π)+...+1/(n^2+nπ)】limn【(1/n^2+nπ)+(1/n^2+nπ)+.(1/n^2+nπ)】=limn(n/(n^2+nπ)=
先有理化,然后分子和分母各除以n²
分子分母同乘√(n²+n)+nlim(n→+∞)[√(n²+n)-n]=lim(n→+∞)[√(n²+n)-n][√(n²+n)+n]/[√(n²+n
(n+1)(根号n^2+1-n)*(根号n^2+1+n)/(根号n^2+1+n)=(n+1)*1/(根号n^2+1+n)上下同时除以n=(1+1/n)/(根号1+1/n^2+1/n)=1/1=1
原式=lim(1+2+……+n)/n^2=lim[n(n+1)/2]/n^2=1/2lim(n+1)/n=1/2*lim(1+1/n)=1/2*1=1/2
((1+1/n-1/n^2)^(1/(1/n-1/n^2)))^(1/n-1/n^2)n=e^1-1/n=e
n→无穷时,lima^n/(a^n+1)=lim1/(1+1/a^n)1.若|a|=1,则极限为:1/22.若|a|>1,则极限为:13.若|a|