求极限lim(n→∞)(1 根号n^2 1······1 根号n^2 n)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 21:21:08
直接写.就是零,这题不需要过程.你要是非要写,就把它拆开变成两项,然后等于零加零
利用夹逼准则,每项的分母可以放大成√(n²+n)缩小成√(n²+1)之后发现两边极限相等为1故原极限为1 具体解题步骤如下
分子分母乘以(根号(n+1)+根号n)原式=根号n/(根号(n+1)+根号n)=1/(1+根号((n+1)/n))n趋向无穷时原式为1/2
√(n+1)-√n=[√(n+1)-√n]*[√(n+1)+√n]/[√(n+1)+√n]=1/[√(n+1)+√n]那么显然在n趋于无穷大的时候,分母[√(n+1)+√n]趋于无穷大,所以√(n+1
原式=limn^(2/3)/(n+1)*sinn!=(对左边那个分子分母除以n)limn(-1/3)/(1+1/n)*sinn!这样就写了一个无穷小量乘以有界量的形式所以极限是0
利用三角函数诱导公式加一项,再分子有理化,过程如下:lim(n→无穷大)sin[根号下(n^2+1)]*π=-lim(n→无穷大)sin{[根号下(n^2+1)]-n}*π=-lim(n→无穷大)si
3.原式=lim(n→∞)[根号(n^2+4n+5)-(n+2)+3],然后把3放一边对前两项进行分子有理化.=lim(n→∞)1/[根号(n^2+4n+5)+(n+2)]加一个与世隔绝的3=0+3=
n[√(n²+1)-√(n²-1)]=n[√(n²+1)-√(n²-1)][√(n²+1)+√(n²-1)]/[√(n²+1)+√
设y=[√(n^2+1)/(n+1)]^nlny=nln[√(n^2+1)/(n+1)]=n[1/2ln(n^2+1)-ln(n+1)]lim(n→∞)lny=lim[1/2ln(n^2+1)-ln(
用无穷小量分出法:分子和分母同除以n,则有,此时分子:根号n分之1是无穷小量,而sinn是有界函数,无穷小量与有界函数的乘积还是无穷小量,所以分子极限是零.此时分母:1+1/n,其中1/n是无穷小量,
n→+∞时[a^n+(-b)^n]/[a^(n+1)+(-b)^(n+1)]={[1+(-b/a)^n]/[a-b(-b/a)^n]→1/a,|a|>|b|;.{[(-a/b)^n+1]/[a(-a/
1-cosx=1-(1-2sin²x/2)=2sin²x/2所以x→0-原式=lim-√2*sin(x/2)/(2sin(x/2)cos(x/2))=lim-√2/(2cos(x/
[2^(n+1)+3^(n+1)]/[2^n+3^n]=[2*2^n+3*3^2]/[2^n+3^n]=[2*2^n+2*3^2+3^n]/[2^n+3^n]=2+3^n/[2^n+3^n]lim2+
题目没抄错的话你认为结果是多少呢?不明显是无穷大的吗,这点数学头脑都没有?!个人认为原题应该是求:lim(n→∞)根号n+1-根号n的极限是多少这样的话,给(根号n+1-根号n)乘以(根号n+1+根号
不等式两边夹答案是3再问:能不能细点再答:3=
[√(n²+1)-n]=====>>>>>分子有理化=1/[√(n²+1)+n]→0这个极限是0
答案是4/e详解如图:
再答:我的答案,望采纳!