求极限limx ln(1 x)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 10:15:37
∵x是无穷大量∴1/x是无穷小量lim(x->负无穷大)1/x=0e^x=1/e^(-x)∵x->负无穷大∴-x->正无穷大e^(-x)->正无穷大e^x=1/e^(-x)是无穷小量lim(x->负无
按照极限的定义来说,这个结果应该是不存在理论上说,当x趋近于8时,有两种方式第一种是x从小于8的方向向右趋近于8,这时,x-8始终小于0,倒数趋于负无穷第二种是x从大于8的方向向左趋近于8,这时,x-
把里面的x/(1+x)倒数一下变成1+1/x再取极限,结果就是e,再倒数回来就是1/e所以答案就是1/e
根据洛必达法则lim(n→0)ln(1+x)/x=lim(n→0)l/(x+1)=1
是x趋于0吗此时ln(1+x)和x是等价无穷小所以极限=1
lim(x/(x+1))^x=lim1/【(x+1)/x)】^x=lim1/(1+1/x))^x=1/e
lim(1-跟号下cosx)/(1-cos跟号x)^2,x趋于0+=lim(1/(1-cos跟号x)x趋于0+=+∞
当x->0时lim[1/x^2-1/(x*tanx)]=lim(1/x²-cosx/xsinx)=lim[1/x²-cosx/(xsinx)]=lim[(sinx-xcosx)/(
是lim(x→∞)[(1+1/x)^(x^2)]/(e^x)=========令y=[(1+1/x)^(x^2)]/(e^x),则lny=(x^2)ln(1+1/x)-x.令t=1/x,则当x→∞时,
结果是e^2x^X-1=e^(xlnx)-1=xlnx好了原式=limx^(xlnx)下面罗比达法则
一下都省略极限过程x→0设A=lim(cosx+sinx)^1/x,则lnA=limln(cosx+sinx)/x=lim[ln(cosx+sinx)]'/x'【L'Hospital法则】=lim(c
再问:第二行到第三行的转换原理是?再答:你把lim符号写外面也是一样的再问:ln是怎么消掉的再答:等价无穷小再答:ln(1+x)~x
原式配个+1-1得到In{arctanx/x+1-1}/x2用等价无穷小arctanx-1/x3再洛必达(1/1+x2)-1/x3最后变成-1/3+3x2得到-1/3
直接观察就行了.因为函数定义域为(-∞,-1)U(1,+∞),因此左极限不存在.(因为根本无定义),当x→1+时,x^2→1,因此x^2-1→0,因此右极限为+∞(广义),所以,函数左、右极限均不存在
上下同乘√(x+1)+1分子平方差=x+1-1=x所以原式=x/[x[√(x+1)+1]=1/[√(x+1)+1]x趋于0所以极限=1/[√(0+1)+1]=1/2
题目不完整.缺x趋向?
猜测你漏了3个括号[(x-1)/(x+2)]^(x+1)=[1-3/(x+2)]^(x+1)={[1-1/(x/3+2/3)]^(x/3+2/3)}^[(x+1)/(x/3+2/3)]然后取极限令t=
lim(x-->0)(1/x)-1/sinx=lim(x-->0)(sinx-x)/(xsinx)=lim(x-->0)(sinx-x)/(x²)=lim(x-->0)(cosx-1)/(2
x/lnx-1/(xlnx)=(x^2-1)/(xlnx)用洛必达法则:(x^2-1)'=2x,(xlnx)'=lnx+1lim(x->1)x/lnx-1/(xlnx)=lim(x->1)(x^2-1