求极限lim_{x->0} tan3x sin5x = ( )
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 23:58:46
一眼就看出是0啦啊(lnx)^x这个分母在x趋近于0的时候是不趋近于0的.而分子x趋近于0那么结果肯定是0啊
根据洛必达法则lim(n→0)ln(1+x)/x=lim(n→0)l/(x+1)=1
有没有写错?x趋于0三项的极限都存在所以原式=e^0+sin0+0^2=1
求极限lim_{x->0}tan3x/sin5x=()A.0B.3C.3/5D.5/3C=x→0时sin3x/sin5x=3x/5x=3/5lim_{x->0}
lim(x->0)ln(sinx/x)/(x*x)(0/0型)=lim(x->0)ln[1+(sinx/x-1)]/(x^2)ln[1+(sinx/x-1)]~(sinx/x-1)(当x->0时)所以
x^sinxx是不能小于0的吧.不然会出现复数的实数次幂(在实数范围内没有意义的形式)x>0时,可以取对数ln(x^sinx)=sinxlnx极限与xlnx相同【注意到sinx趋向0(可用阶等价的x替
当x->0时lim[1/x^2-1/(x*tanx)]=lim(1/x²-cosx/xsinx)=lim[1/x²-cosx/(xsinx)]=lim[(sinx-xcosx)/(
∵lim(x->0)[ln(x+e^x)/x]=lim(x->0)[(1+e^x)/(x+e^x)](0/0型极限,应用罗比达法则)=(1+1)/(0+1)=2∴lim(x->0)[(x+e^x)^(
x和sinx是等价无穷小,非要过程的话,用洛必达吧,如下:lim2x/sinx=2*limx/sinx=2*lim1/cosx=2*1=2
原式=lim(lncotx)'/(lnx)'.分子分母都趋近于无穷大,罗必达法则=lim(-1/sin^2xcotx)/(1/x)=lim-x/sinxcosx=-1再问:(lncotx)‘不是应该等
本来是很简单的图,步骤没多少
再问:第二行到第三行的转换原理是?再答:你把lim符号写外面也是一样的再问:ln是怎么消掉的再答:等价无穷小再答:ln(1+x)~x
1.第一题,运用洛必达法则,lim[f(a)-f(a+2h)]/3h=lim[f'(a)-f'(a+2h)*2]/3=-f'(a)/32.同样是洛必达法则,lim[f(x)sinx/3x]=lim[f
im(x->0)sin(sinx)/x=lim(x->0)[sin(sinx)/sinx]*[sinx/x]∵x->0;t=sinx->0,lim(x->0)[sin(sinx)/sinx]=lim(
lim(x→0)[cos(3x)-cos(5x)]/x^2=lim(x→0)[2×sin(4x)×sinx]/x^2=lim(x→0)[2×4x×x]/x^2=8利用:x→0时,sinx与x是等价无穷
需要讨论:lim[x→0+]sinx/|x|=lim[x→0+]sinx/x=1lim[x→0-]sinx/|x|=lim[x→0-]-sinx/x=-1因此本题极限不存在.希望可以帮到你,如果解决了
应该是x→0+e^x,lnx都是连续函数.见复合函数的极限与连续性.