求根号(1 sin x)-1等价于
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 00:58:22
加减不能等价替换说的是部分,如果把加减整体一块替换,有时候还是可以的,这个关键要看是不是等价无穷小,也就是说替换的因子和被替换的因子是不是等价无穷小比如说这道题,sinx+cosx能不能用1+x替换,
当x趋于0时,tanx~x,sinx~x,√(1+x)-1~x/2,√(1-x)-1~(-x)/2lim[√(1+tanx)-√(1-sinx)]=lim[√(1+x)-√(1-x)]=lim[√(1
lim(x→0)[√(1+tanx)-√(1+sinx)]/[x*ln(1+x)-x^2]=lim(x→0)[tanx-sinx]/[x*ln(1+x)-x^2][√(1+tanx)+√(1+sinx
x趋近于0求x+sinx的等价无穷小量x+sinx~x+x=2x即x+sinx~2x再问:对不起,是减号,刚刚打错了再答:lim(x->0)(x-sinx)/x^3=lim(x->0)(1-cosx)
因为x趋于0时,sinx才能等价为x这里1/x趋于无穷大,就不行了再问:sin1/x等价于1/x不对吗?1/x相当与x一个整体再答:要1/x整个趋于0,sin1/x才能等价1/x
lim(e^x-1)/sinx=lim(ln(e^x-1+1))/x=1
lim(x→0)(1-√cosx)tanx/(1-cosx)^(3/2)=lim(1-√cosx)(1+√cosx)tanx/(1-cosx)^(3/2)(1+√cosx)=lim(1-cosx)ta
我第二行写错了,根号x改成x的1/4次,反正就是这种方法,分子或分母有理化降次,再用运算法则
lim(x→0)[√(1+tanx)-√(1+sinx)]/ln(1+x^3)=lim(x→0)[√(1+tanx)-√(1+sinx)]/(x^3)=lim(x→0)[√(1+tanx)-√(1+s
分子有理化有原式=lim2sinx/(x(根号(1+sinx)+根号(1-sinx)))=1/2*lim2sinx/x=1/2*2=1
分子有理化即可即分子分母同时乘以:根号(1+tanx)+根号(1+sinx)有理化之后分子趋近于0,分母趋近于2,极限为0其实你是不是题搞错了其实这题直接根号(1+tanx)趋近于1,根号(1+sin
lim[√(1+tanx)-√(1-sinx)]/x^k=常数,下面求k分子有理化=lim[√(1+tanx)-√(1-sinx)][√(1+tanx)+√(1-sinx)]/(x^k[√(1+tan
lim(x→0)(cosx+2sinx)^(1/x)=lim(x→0)[1+(cosx-1+2sinx)]^(1/x)=lim(x→0){[1+(cosx-1+2sinx)]^[1/(cosx-1+2
考虑等价无穷小,就是考虑在某个极限过程中两者的比值的极限为1考虑lim【x→0】(x+√x)/(1-√x)÷√x=lim【x→0】(x+√x)/(√x-x).分子分母同除于√x(即根号x)=lim【x
1+sinx=(sin(x/2)+cos(x/2))^2即原式=∫(sin(x/2)+cos(x/2))dx=2∫sin(x/2)d(x/2)+2∫cos(x/2)d(x/2)=2sin(x/2)-2
(根号下1+bx^2)-1~bx^2/2~x^2则b=2
lim(1-cosx+sinx)/x=lim[(1-cosx)/x+sinx/x]=lim(x/2+1)=1
√(1-cosX)=√[(1-cosX)/1]【根号内分子分母同乘以(1+cosx)】:=√[(1-cosX)(1+cosx)/(1+cosx)]=√[(1-cos^2x)/(1+cosx)]=√[s
x分母有理化