求根号下(1-x²)在-1到1上的积分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 19:09:32
2/3*(x-1)^(3/2)是原函数,可以验证一下.
不易输入,发个图片:
极限为3分之2乘根号3.我是用换元法做的.设根号2x+1=a根号x-2=b则可以得到a,b的关系a的平方-2乘b的平方=5,同除以5,把a看成横轴,把b看成纵轴,那这是条双曲线的方程,原函数可看成曲线
原试=lim(x-无穷大)sqrt(x^3)·(sqrt(x+1)-2·sqrt(x)+sqrt(x-1))=lim(x-无穷大)sqrt(x^3)·(sqrt(x+1)-sqrt(x)+sqrt(x
看不懂你写的什么再问:再答:等价无穷小代换再问:谢谢了!再答:x-tanx根据泰勒公式得出再问:才开始学泰勒公式,没太掌握再答:那一章是高数的重中之重再问:工科数分,简直云里雾里
原式=∫√[ln(x+√(1+x^2))+5]d(ln(x+√(1+x^2)+5)=1/2*[ln(x+√(1+x^2))+5]^(-1/2)+C
=-1-4³√x-4³√y=-1-4(³√x+³√y)=-1-4*(-7)=27
把e的x次方幻元为t就很好求了
√x+√y=1,显然x和y的范围都是0到1即y=(1-√x)^2,那么y'=2(1-√x)*(-0.5/√x)=1/√x-1所以曲线的弧长等于L=∫(上限1,下限0)√(1+y'²)dx=∫
利用(a-b)*(a+b)=a²-b²,分子分母同时乘以a+b,其中a=√(1+x²),b=√(x²-2x)原式=lim(x->+∞)(1+2x)/[√(1+x
x=(tant)/2,dx=(1/2)(sect)^2dt,I=(1/2)∫(sect)^3dt∫sect^3dt=sect*tant-∫set*(tant)^2dt=sect*tant-∫(sect
得用凑微分法∫√(2x+1)dx=(1/2)∫√(2x+1)d(2x+1)=(1/2)*(2/3)*(2x+1)^(3/2)|=(1/3)*(2x+1)^(3/2)|=(1/2)*(5√5-3√3)再
【1-x²?】∫x√(1-x²)dx=1/2∫√(1-x²)d(x²)=-1/2*2/3*[√(1-x²)]³+C-1/2*2/3*[√(1
1.三角换元定义域为[0,1]令x=(sina)^2y=sina+cosa由辅助角公式,y=根号2sin(a+45度),a属于[0,90]故1
x/√1-x²+√1-x²/x=[x²+(√1-x²)²]/x*√1-x²=[x²+1-x²]/x*√1-x²