求满足f(x) 2f"(x)dx=x平方

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 06:39:01
求满足f(x) 2f"(x)dx=x平方
F(X)满足F(x)+2f(x分之1)=3X,求f(x)

把X换成1/X得:f(1/x)+2f(x)=3/x(1)(1)×2-原式得:f(x)=(2/x)-x.

设f(x)是连续函数,且满足∫[0,x]f(x-t)dt=e^(-2x)-1,求定积分∫[0,1]f(x)dx

∫[0,x]f(x-t)dt=∫[0,x]f(x-t)d(t-x)=-∫[0,x]f(x-t)d(x-t)取u=x-tt=0,u=x,t=x,u=0=-∫[x,0]f(u)du=∫[0,x]f(u)d

已知f(x)满足2f(x)+f(1/x)=3x,求f(x)

2f(x)+f(1/x)=3x(1)所以2f(1/x)+f(x)=3/x(2)(1)(2)连立2[3x-2f(x)]+f(x)=3/x-3f(x)=3/x-6xf(x)=2x-1/x

如果函数f(x)满足方程f(x)+2f(-x)=x,x属于R,求f(x)

f(x)+2f(-x)=x以-x代入上式中的x,得:f(-x)+2f(x)=-x,即2f(-x)+4f(x)=-2x两式相减得:-3f(x)=3x故有:f(x)=-x

已知二次函数y=fx满足f(-1)=2,f'(0)=0,∫0-1 f(x)dx=-2,求∫1-2 f(x)/x dx的值

设f(x)=ax^2+bx+cf(-1)=a-b+c=2f'(x)=2ax+bf'(0)=b=0∫0-1f(x)dx=(a/3)x^3+(b/2)x^2+cx|0-1=a/3+b/2+c=-2所以a=

若一次函数f(x) 满足f[f(x)]=1+2x 求f(x)

设一次函数f(x)=kx+b,→f[f(x)]=k(kx+b)+b=k*kx+kb+b=2x+1∴k*k=2,k=±√2kb+b=1,b(k+1)=1,b=1/(k+1)k=√2,时b=√2-1,k=

高数题:设f(x)满足∫xf(x)dx=(x^2)*(e^x)+C,求∫f(x)dx第二道:已知非负数F(x)是f(x)

⑴.[x^2)*(e^x)]′=(2x+x²)e^x=xf(x).f(x)=(2+x)e^x.∫(2+x)e^xdx=……(自己算吧).⑵.令y=F(x).原题成为:y(dy/dx)=e^(

∫[f(x)/f'(x)-f^2(x)f"(x)/f'^3(x)]dx 如题

[f(x)/f'(x)]'=[f'²(x)-f(x)f''(x)]/f'²(x)=1-f(x)f''(x)/f'²(x)因此题目中的被积函数为:[f(x)/f'(x)-f

若f(x)=e^x+2∫(0 1)f(x)dx 求f(x)

定积分是常数,所以设∫[01]f(x)dx=A则f(x)=e^x+2∫[01]f(x)dx=e^x+2A两边在区间[0,1]进行定积分得∫[01]f(x)dx=∫[01](e^x+2A)dxA=∫[0

已知f(x)满足2f(x)+f(1/x)=3x,求f(x)?

把1/x当作x带入上式得2f(1/x)+f(x)=3/x,与2f(x)+f(1/x)=3x联立得f(x)=-1/x+2x,定义域x不等于0

f(x)=e^x/x,求∫f'(x)dx/1+f^2(x)?

∫f'(x)dx/1+f^2(x)=∫df(x)/[1+f^2(x)]=arctanf(x)+c=arctan(e^x/x)+c

设函数f(x)满足f(x)+2f(1/x)=x,求f(x)

f(x)+2f(1/x)=x用1/x代替x得:f(1/x)+2f(x)=1/x两边同时乘2得:2f(1/x)+4f(x)=2/x和原式相减得:3f(x)=2/x-x所以f(x)=2/(3x)-x/3

已知f(x)满足2f(x)+f(-x)=-3x+1,求f(x)

令x=a,得2f(a)+f(-a)=-3a+1...①令x=-a,得2f(-a)+f(a)=3a+1.②由①-②得:f(a)-f(-a)=-6a.③由①+③得:3f(a)=-9a+1f(a)=-3a+

设f(x)为连续函数,且满足f(x)=3x^2-x∫(1,0)f(x)dx求f(x)

f(x)=3x²-x∫(0到1)f(x)dx令∫(0到1)f(x)dx=Cf(x)=3x²-Cx∫(0到1)f(x)dx=3∫(0到1)x²dx-C∫(0到1)xdxC=

设f(x)为连续函数,且满足f(x)=1+[(1-x^2)^1/2]*∫﹙0→1﹚f(x)dx,求f(x)

令t=∫﹙0→1﹚f(x)dx为某一常数两边对(0,1)积分,求得t带入课求得f(x)

一次函数f(x)满足f [f(x)] =1+2x,求f(x)

1.设一次函数f(x)=kx+b,(k≠0),则f(f(x))=k(kx+b)+b=k²x+b(k+1),由题意,k²x+b(k+1)=1+2x,∴k²=2且b(k+1)

设函数f(x)满足f(lnx) =ln(1+x)/x,求∫f(x)dx

令t=e^x,x=lnt,dx=(1/t)dt∫f(x)dx=∫f(lnt)•(1/t)dt=∫ln(1+t)/t•(1/t)dt=∫ln(1+t)d(-1/t)=(-1/t)

偶函数f(x),满足f(x+2)=-f(x),求f(19)=?

因为f(x+2)=-f(x),可知f(x+4)=-f(x+2),所以f(x+4)=f(x).所以f(x)的周期为4.再令x=-1,则有f(1)=-f(-1),又因为f(x)是偶函数,所以f(-1)=f

二次函数f(x)满足f(x+1)+f(x-1)=2x^2+4x,求f(x)

f(x)=ax²+bx+cf(x+1)=a(x+1)²+b(x+1)+c=ax²+2ax+a+bx+b+cf(x-1)=a(x-1)²+b(x-1)+c=ax&