求满足f(x) 2f"(x)dx=x平方
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 06:39:01
把X换成1/X得:f(1/x)+2f(x)=3/x(1)(1)×2-原式得:f(x)=(2/x)-x.
∫[0,x]f(x-t)dt=∫[0,x]f(x-t)d(t-x)=-∫[0,x]f(x-t)d(x-t)取u=x-tt=0,u=x,t=x,u=0=-∫[x,0]f(u)du=∫[0,x]f(u)d
2f(x)+f(1/x)=3x(1)所以2f(1/x)+f(x)=3/x(2)(1)(2)连立2[3x-2f(x)]+f(x)=3/x-3f(x)=3/x-6xf(x)=2x-1/x
f(x)+2f(-x)=x以-x代入上式中的x,得:f(-x)+2f(x)=-x,即2f(-x)+4f(x)=-2x两式相减得:-3f(x)=3x故有:f(x)=-x
设f(x)=ax^2+bx+cf(-1)=a-b+c=2f'(x)=2ax+bf'(0)=b=0∫0-1f(x)dx=(a/3)x^3+(b/2)x^2+cx|0-1=a/3+b/2+c=-2所以a=
设一次函数f(x)=kx+b,→f[f(x)]=k(kx+b)+b=k*kx+kb+b=2x+1∴k*k=2,k=±√2kb+b=1,b(k+1)=1,b=1/(k+1)k=√2,时b=√2-1,k=
⑴.[x^2)*(e^x)]′=(2x+x²)e^x=xf(x).f(x)=(2+x)e^x.∫(2+x)e^xdx=……(自己算吧).⑵.令y=F(x).原题成为:y(dy/dx)=e^(
[f(x)/f'(x)]'=[f'²(x)-f(x)f''(x)]/f'²(x)=1-f(x)f''(x)/f'²(x)因此题目中的被积函数为:[f(x)/f'(x)-f
定积分是常数,所以设∫[01]f(x)dx=A则f(x)=e^x+2∫[01]f(x)dx=e^x+2A两边在区间[0,1]进行定积分得∫[01]f(x)dx=∫[01](e^x+2A)dxA=∫[0
把1/x当作x带入上式得2f(1/x)+f(x)=3/x,与2f(x)+f(1/x)=3x联立得f(x)=-1/x+2x,定义域x不等于0
∫f'(x)dx/1+f^2(x)=∫df(x)/[1+f^2(x)]=arctanf(x)+c=arctan(e^x/x)+c
f(x)+2f(1/x)=x用1/x代替x得:f(1/x)+2f(x)=1/x两边同时乘2得:2f(1/x)+4f(x)=2/x和原式相减得:3f(x)=2/x-x所以f(x)=2/(3x)-x/3
令x=a,得2f(a)+f(-a)=-3a+1...①令x=-a,得2f(-a)+f(a)=3a+1.②由①-②得:f(a)-f(-a)=-6a.③由①+③得:3f(a)=-9a+1f(a)=-3a+
f(x)=3x²-x∫(0到1)f(x)dx令∫(0到1)f(x)dx=Cf(x)=3x²-Cx∫(0到1)f(x)dx=3∫(0到1)x²dx-C∫(0到1)xdxC=
令t=∫﹙0→1﹚f(x)dx为某一常数两边对(0,1)积分,求得t带入课求得f(x)
1.设一次函数f(x)=kx+b,(k≠0),则f(f(x))=k(kx+b)+b=k²x+b(k+1),由题意,k²x+b(k+1)=1+2x,∴k²=2且b(k+1)
令t=e^x,x=lnt,dx=(1/t)dt∫f(x)dx=∫f(lnt)•(1/t)dt=∫ln(1+t)/t•(1/t)dt=∫ln(1+t)d(-1/t)=(-1/t)
因为f(x+2)=-f(x),可知f(x+4)=-f(x+2),所以f(x+4)=f(x).所以f(x)的周期为4.再令x=-1,则有f(1)=-f(-1),又因为f(x)是偶函数,所以f(-1)=f
f(x)=ax²+bx+cf(x+1)=a(x+1)²+b(x+1)+c=ax²+2ax+a+bx+b+cf(x-1)=a(x-1)²+b(x-1)+c=ax&