求特征值和特征向量无法展开求法

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 19:29:26
求特征值和特征向量无法展开求法
用matlab求特征值和特征向量?

[V,D]=eig(A):求矩阵A的全部特征值,构成对角阵D,并求A的特征向量构成V的列向量.

线性代数特征值和特征向量的求法

lp87562514,首先你要明白,只有方阵才有特殊值.设矩阵为[A],求|λE-A|=0的所有λ,这些λ就为矩阵A的特征值,其中有的是重的,有几次就叫几重特征值.然后再解(λE-A)x=0,得到的这

关于矩阵特征值与特征向量的求法问题

Au=λu(A-λE)u=0对任意向量u均应该成立,存在非零解u≠0的唯一条件是(A-λE)行列式为0|(A-λE)|=0一个矩阵A能够产生一个特征多项式,每一个n次的特征多项式也可以产生一个n*n矩

求矩阵特征值与特征向量的数值求法有哪些

求三阶矩阵A=(123,312,231)的特征值和特征向量我看了1.计算行列式|A-λE|=1-λ2331-λ2231-λc1+

求矩阵特征值和特征向量,

A=1/21/41/41/41/21/41/41/41/2解方程|A-xE|=0,化简得到(x-1)(x-1/4)(x-1/4)=0所以特征值是1,1/4,1/4x=1对应的特征向量:A-1E=-1/

已知特征值和某个特征值的特征向量如何求矩阵特征值所属的矩阵?

这个问题就复杂了.如果知道一个特征值的特征向量的话,很多时候都是不可求的,少数是可求的.可求的情况:矩阵为对称矩阵,无其他的特征值于知道特征向量的特征值相同时,且其他的特征值相同,可求因为不同的特征值

二阶矩阵的特征值和特征向量的求法

|A-xE|=2-x321-x=(2-x)(1-x)-6=x^2-3x-4=(x+1)(x-4)所以特征值是-1,4-1对应的特征向量:(A+E)x=0的系数矩阵为3322基础解系为[-11]',所以

求矩阵最大特征值和对应特征向量

A=[1,1/3,1/3,1/5,1/9;3,1,1,1/2,1/3;3,1,1,1/2,1/3;5,2,2,1,1/2;9,3,3,2,1];[x,lumda]=eig(A);r=abs(sum(l

求下列矩阵的特征值和特征向量

|A-λE|=1-λ11111-λ-1-11-11-λ-11-1-11-λri+r1,i=2,3,41-λ1112-λ2-λ002-λ02-λ02-λ002-λc1-c2-c3-c4-2-λ11102

用matlab求矩阵特征值和特征向量

输入:x=[15133;1/51642;11/6134;1/31/41/312;1/31/21/41/21]eig(x)输出:ans=6.3156-0.5309+2.7527i-0.5309-2.75

关于特征值,特征向量的求法.B=( 1 1 0 0 2 1 0 0 3) 有一个特征值为 入=1,那么,特征向量怎么求呢

算到这里还看不出来啊这就相当于求方程组x2=0,x3=0这也就是说x1是任意的啦所以这个线性无关的特征向量是a=(1,0,0)^T

求矩阵特征向量和特征值

|A-λE|=(-1-λ)(-2-λ)^2所以A的特征值为:-1,-2,-2λ=-1时A+E=-1100-11000化成10-101-1000所以λ=-1的特征向量为c(1,1,1),c为非零数.当λ

求矩阵的特征向量和特征值...

|λE-A|=||λ.-4.-2||-4.λ.-8||-2.-8.λ-8|则|λE-A|=|0.-4-4λ.λ^2/2-4λ-2||0.λ+16.8-2λ||-2.-8..λ-8|令|λE-A|=0,

知道特征向量和特征值如何求方阵

例如A\xi_1=\lambda_1\xi_1,A\xi_2=\lambda_2\xi_2,A\xi_3=\lambda_3\xi_3记P=(\xi_1\xi_2\xi_3),则A=Pdiag(\la

求特征值和特征向量及其单位化

令|RE-A|=0,E是单位矩阵,求出R的值,这就是所谓的特征值了,把R代入方程(R-3)x1-5x2=0-5x1+(R+1)x2=0求出基础解系,他们的线性组合就是所谓的特征向量了以上是一个简单的例

线性代数中求相同特征值对应不同的特征向量的求法,是不是不一定要和答案一样答案写成

不算错.是对的.特征向量是齐次线性方程组的非零解齐次线性方程组的基础解系不是唯一的所以对应的可逆或正交矩阵也不是唯一的

求特征值和全部特征向量

f(λ)=(λ-1)(λ-1)(λ+1)Soλ=1or-1Whenλ=1:Computetheequationsystem[E-A]X=O;wegetX=(-1,-2,1)'sotheeigenvec