求由抛物面z=6-x^2-y^2与圆锥面z=x^2 y^2所围成的立体的体积
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 01:57:15
这是一个旋转抛物面,垂直于z轴的截平面上的截口都是圆,面积没错,就是πz
空间点(x0,y0,z0)到平面Ax+By+Cz+D=0的距离为d=|Ax0+By0+Cz0+D|/√(A^2+B^2+C^2)设旋转抛物面z=x^2+y^2上的点为(x,y,z),则到平面x+y+z
令f(x,y,z)=x^2+y^2-z则f`x|(1,2,5)=2x|(1,2,5)=2f`y|(1,2,5)=2y|(1,2,5)=4f`z|(1,2,5)=-1|(1,2,5)=-1故这一点的法向
抛物面上的任意一点(x,y,x^2+y^2)到平面的距离d=|x+y-2(x^2+y^2)-2|/根号6=2|(x-1/4)^2+(y-1/4)^2+7/8|/根号6,所以当x=y=1/4距离最短为7
图老是传不上,传得上的话就好,传不上追问我再问:答案对了,我想问下为什么积分区间是0到4?那个图形不是一个椭圆抛物面么,那x和y的负半轴应该也要积分啊再答:看到我画的积分区域没,是根据坐标轴是0且x=
不用画图,很显然,这道题用二重积分作,积分区域就是在xoy平面上由x=0,y=0,x+y=1围成的三角形,被积函数是你那个有乱码的面x²+y²=6-z解出的z=6-x²-
答:s=∫∫u(x,y,z)sqrt(1+(dz/dx)^2+(dz/dy)^2)dxdy=∫∫1/2(x^2+y^2)sqrt(1+x^2+y^2)dxdy=∫∫1/2r^2sqrt(1+r^2)r
z=10-3x^2-3y^2与z=4联立,消去z,得D:x^2+y^2=2.V=∫∫(10-3x^2-3y^2-4)dxdy=3∫dt∫
第一个是对的!其余两个都不对!错在:将x^2+y^2=z代入积分式.因为在立体内部x^2+y^2
二重积分的几何意义是曲顶柱体的体积:曲顶柱体的顶面是:z=x^2+y^2,底面区域D是xOy面内由x轴、y轴、x+y=1所围V=∫∫(x^2+y^2)dxdy=∫[0,1]∫[0,1](x^2+y^2
体积=∫∫D(x²+y²)dxdy=∫∫D(p²)pdpdθ=∫(0,2π)dθ∫(0,√a)p³dp=1/4∫(0,2π)p^4|(0,√a)dθ=1/4∫(
换算成柱坐标方程抛物面z=x^2+y^2为z=ρ^2;平面2x-2y-z=1为z=2ρ(cosθ+sinθ)-1它们的交线为ρ^2=2ρ(cosθ+sinθ)-1→cosθ+sinθ=(1/2)(ρ+
求偏导z'_x=-2xz'_y=-2y令z1=4-x^2-y^2=x^2+y^2=z2可得D:x^2+y^2≤2极坐标下可表示为0≤r≤√2,0≤θ≤2πS=∫∫(D)√(1+4x²+4y&
题目有问题,所求的内容不明.可能是要求在第一象限吧?从哪儿弄了这么一道题,别在它上面浪费时间了.新增:什么教材都可能有错.你需要的是掌握微积分的知识,而不是把时间花在理解题意上!
这里能做出这题的可能有点少再问:所以挂着先看看〒_〒再答:再问:赞!再答:不客气再问:和书后答案一样
面积=∫∫D√1+4x²+4y²dxdy=∫∫D√1+4p²pdpdθ=∫(0,2π)dθ∫(0,√2)√1+4p²pdp=π/4∫(0,√2)√1+4p
这里直接把z=x+2y代入椭圆抛物面2y^2+z^2=xh中消去z后得到:x^2+4xy-xh+5y^2=0这是一个曲面立体,再求其与平面z=0的交线即可,所以有方程组x^2+4xy-xh+5y^2=
∫∫∫ΩzdV=∫(0→1)zdz∫∫Dxydxdy=∫(0→1)z•π(2z)dz=2π•(1/3)[z³]|(0→1)=2π/3或∫∫∫ΩzdV=∫∫Dxydxd
为了求出在(1,-1.5)点处的法向量考虑z对x和y的偏导数求得切向量(1,0,4)和(0,1,-9)求得法向量为切向量的向量积(-4,9,1)于是切平面方程为-4x+9y+z=-35/4