求由曲线y^2=x和y=x-2所围成的图形的面积

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 23:42:26
求由曲线y^2=x和y=x-2所围成的图形的面积
求由曲线y=sinx,y=cosx和直线x=0,x=π2

由于y=sinx,y=cosx的交点是(π4,22),因此所围成的面积为A=∫π20|sinx−cosx|dx=∫π40(cosx−sinx)dx+∫π2π4(sinx−cosx)dx=[sinx+c

由曲线y=x的平方+2和直线y=3x所围成的平面图形的面积求图解

 再问:哦,我是把那个区间分开做了。知道了。谢了。再答:采纳哦再问:嗯嗯

求由曲线y^2=x+4与x+2y-4=0围城的图形的面积

欲求曲线y^2=x+4与x+2y-4=0围成的图形的面积:(1)求曲线y^2=x+4与x+2y-4=0的交点,y^2=8-2y,解得交点为(0,2)和(12,-4),x+2y-4=0与x轴交点为(4,

求由曲线y=x^2,直线y=1及y轴围成的平面图形的面积

再问:X>=0再答:做的是x大于等于0

由曲线y=x^2,y=x^3围成的封闭图形面积

因为X^2-X^3=0时为交点所以X=0或X=1即围成的范围在【0.1】S面积=∫X^2-X^3=1/3X^3-1/4X^4|(0

求曲线y=x^3-x^2-x+1 的凹凸区间和拐点.

y=x^3-x^2-x+1y'=3x²-2x-1y''=6x-2=0x=1/3x0x=1/3,y=16/27即拐点为(1/3,16/27)凸区间为(-∞,1/3)凹区间为(1/3,+∞)

由曲线y=2-x2+和y=x围城的图形的面积为

y=2-x2+应该是y=2-x^2吧?若是,解法如下:联立y=2-x^2和y=x得交点为(1,1)、(-2,-2)∫(2-x^2-x)dx=[2x-0.5x^2-(1/3)x^3]=4.5(积分上下限

求由曲线y=x²与y=x+2围成图形的面积

用定积分用定积分y=x²与y=x+2的交点为:(-1,1),(2,4)则由曲线y=x²与y=x+2围成图形的面积等于y=x+2-x²在[-1,2]上的定积分.所以:S=∫

求由曲线y=cosx y=sinx 和直线 x=0 x=2所围图形的面积

如图,第一个图是你要求的面积,把它可以转化成第二个图,两个面积是相同的,这样好求一点.这样,则面积是两块对称的图形,不妨算一下左边的面积,S=∫(sinx-cosx)dx (π/4≤x≤5π

求由直线Y=x,x=2,曲线所围图形的面积

条件不全吧,两条直线怎么确定一个图形,若非要求它的面积为无穷大.

求由曲线x^2+y2=|x|+|y|所围成的图形的面积.

x^2+y^2=|x|+|y||x|^2||y|^2-|x|-|y|=0(|x|-1/2)^2+(|y|-1/2)^2=1/2x>0&y>0:(x-1/2)^2+(y-1/2)^2=1/2,这是一个以

设随机变量(X,Y)在平面区域D上服从均匀分布,其中D是由直线y=x和曲线y=x^2所围成的区域,求(X,Y)的边缘概

设(X,Y)的联合密度函数f(x,y)=a(x,y)∈D首先有概率完备性知1=∫∫f(x,y)dxdy=∫∫adxdy=a∫(0,1)dx∫(x^2,x)dy=a/6所以a=6.(X,Y)的联合密度函

如题,求由曲线y=x^3及y=x^(1/2)所围图形的面积,

变成定积分y=x^3及y=x^(1/2)的交点(0,0)(1,1)化为定积分得∫[0,1][x^(1/2)-x^3]dx=[2/3x^(3/2)-x^4/4][0,1]=2/3-1/4=5/12

求曲线y=x^2和曲线y^2=x所围成的平面图形的面积

两曲线交点(0,0),(1,1)积分区间为[0,1]已知y²=x在y=x²上方→∫(√x-x²)dx接下来就是计算了

求由曲线x^2+y^2=x+y围城的图形的面积

x^2+y^2=x+y(x^2-x+1/4)+(y^2-y+1/4)=1/2(x-1/2)^2+(y-1/2)^2=1/2所以曲线表示一个圆,半径是根号(1/2)那么面积是:Пr^2=П*(√(1/2

求由曲线y=e^x(x

绕x轴:∫0-∞(pi*(e^x)^2)*dx=(pi/2)*[e^2x]0-∞=pi/2绕y轴:(与y轴交点(0,1))∫10(pi*(lny)^2)*dy=pi*[y*(lny)^2-2y(lny

求由直线y=x-2和曲线y=-x2所围成的图形的面积.

联立y=x−2y=−x2,得x1=-2,x2=1.所以,A=∫−21(x−2)dx−∫−21(−x2)dx=(x22−2x)|1−2+13x3| 1−2=−92,故所求面积s=92.

求由曲线y^2=x和直线x=1围成的封闭图形的面积

S=∫(-1,1)(1-y²)dy=∫(-1,1)1dy-∫(-1,1)y²dy=2-2/3=4/3

求由曲线y=x(x-2)^2和y=2x(x-2)所围成的图形的面积

太难打了,见图片中,做题不易,多给分哈