f(x)=1 2x² 2ax,g(x)=3a²lnx b,其中a>0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 06:12:21
f'(x)=3ax^2+6x-6a而f'(1)=03a+6-6a=0a=2
f'(x)=(xlnx)'=lnx+1当1≤x≤3时lnx+1>0,即f(x),单调增加所以f(x)在[1,3]上的最小值为f(1)=0要使g(x)=-x^2+2ax-3在[1,3]上单调增加因为它的
答案请点击图片.
(1)y=xlnx-2xy'=lnx+1-2=lnx-1令y'=0x=e0=0在[1,+无穷)上恒成立1/2ax^2+2x>=01/2ax^2>=-2xa>=-4/x所以a>=0(3)lnx/x=ax
f(x)=log(2)[(x-1)/(x+1)],g(x)=2ax+1-a,h(x)=f(x)+g(x)1、f(-x)=log(2)[(-x-1)/(-x+1)]=log(2)[(x+1)/(x-1)
(1)这个题目有点繁琐,思路还是很清晰的,是连续函数在闭区间上的最值问题,可能取得最大值点为f(0),f(1),f(-1/(2a))下面就要分类分析,当f(0)为最大值时,求得a=-1.25,由二次函
1、x1属于【-1,2】,f(x)的范围为[-1,1]2、当经2属于【-1,2】,a>0,f(x2)的范围为[-a+2,2a+2]3、一定存在x2属于【-1,2】,使得f(x1)=g(x2),则-a+
f(x)=xlnxg(x)=x^3+2ax^2+2当x>0,2f(x)0,g(x)+2-2f(x)>=0令F(x)=g(x)+2-2f(x)=x^3+2ax^2+4-2xlnx,其中F(0)=0F'(
2f(x)≥g(x),x∈(0,+∞),即2xlnx≥-x²+ax+x-3,ax≤2x·lnx+x²-x+3,a≤2lnx+x-1+3/x,x∈(0,+∞),令h(x)=2lnx+
g'(x)=3x²+2ax-1不等式2f(x)≤g'(x)+2即2xlnx≤3x²+2ax+1解集为P∵(0,+无穷)是P的子集∴x>0时,2xlnx≤3x²+2ax+1
对不起啊,老师说导数我没学,不可能一下做出这道题...老师说记h(x)=lnx-1/e^x+2/ex用导数的方法求单调性,求出最小值大于0就可以了.我开始以为是高一的函数题,想用换元做,走不出去..唉
求导,g’(x)=3x2+2ax-1g’(1)=2+2a=0(因为单调区间为(-1/3,1),故-1/3、1都为导函数0点)a=-1所以g(x)=x3-x2-x+2斜率k=g’(1)=0,切线方程为,
f(x)=x/lnx-axf'(x)=(lnx-1)/(lnx)²-a=1/lnx-(1/lnx)²-a令f'(x)<0,得a>1/lnx-(1/lnx)²对x∈(1,+
答:a=1/2,f(x)=ax^2-x=(1/2)x^2-x,g(x)=lnxy=h(x)=f(x)-2g(x)=(1/2)x^2-x-2lnx求导:h'(x)=x-1-2/x,x>0解h'(x)=x
h(x)=xg(x)-2x=xln(x)-2x,x>0.h'(x)=ln(x)+1-2=ln(x)-1,00,h(x)单调递增.f(x)=ax^2/2+2x,x>=1时,f'(x)=ax+2>=0.x
1.a=-3/2,g(x)函数的解析式即知2.y=5x+63.你还是问老师吧我是今年刚毕业的考生都忘的差不多了一二问应该对!(0,正无穷)属于P那么P集合也是一个无穷集了.我尽力了!
f'(x)=3ax^2+2x+b,g(x)=f(x)+f'(x)=ax^3+(3a+1)x^2+(b+2)x+bg(x)=f(x)+f'(x)是奇函数g(x)=g(-x)所以3a+1=0a=-1/3b
(1)当x∈[1,+∞)时,f(x)的图像恒在g(x)的图像上方,则h(x)=f(x)-g(x)=ax²-x+a>0对x∈[1,+∞)恒成立,所以a>0,△=1-4a²0,△=1-
(1)F'(x)=e^x+cosx-a,x=0是极值点,要求F‘(0)=0即a=2(2)依题意,f(x1)=g(x2)=x2,故PQ=|x2-x1|=|f(x1)-x1|=|f(x1)-g(x1)|=
一般情况下呢,大家都把a当作常数,若把a当作常数呢,当然就只有两种情况a={-log(2)[(x-1)/(x+1)]}/(2x)=-f(x)/(2x)这种情况下,a含有x变量,当然是不存在的但是,原题