求解矩阵基础解系

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 22:11:42
求解矩阵基础解系
如何求解矩阵方程

如果是方阵的话,工程上一般是用海利哈密尔顿定理.例如计算一个矩阵函数f(A)先求得待求矩阵的最小多项式的根,假如一共存在n个根s1,s2,sn.则设存在一个n次多项式函数g(s),使得g(s)与f(s

矩阵和线性方程求解

7、(D)举个简单的例子A=[10;00],B=[00;12],AB=0,但BA=[00;10]10、首先题目有明显错误,等号右边的应为长度为2的向量也就是2个0改正过后选(A)乘过后就是一个齐次的线

线性代数.已知最简行阶梯矩阵如何求基础解系?

x1x2...xn为基础解系的基础解则a1x1+a2x2+...anxn为其次方程的通解a1a2...an属于R

线性代数,在基础解系部分,如果A是4×3的矩阵,则基础解系为3-r,如果A是3×4的矩阵的话,基础解系是多少,跟行数,列

基础解系所含向量的个数等于未知量的个数n减去矩阵A的秩.与行数列数没有关系的再问:为什么未知量的个数就是矩阵的列向量呢?再答:你把方程怎么样写成的矩阵再答:你自己想想

线性代数求基础解系,图中这两个矩阵怎么求基础解系.怎么人家一眼就看出秩等于几,然后求出基础解系.

以左边为例,先把5变成1,然后-2-4能变成0,然后把3变成1,最后5就成0了.然后秩就是2,基础解系自然就出来了.建议楼主多看书,多练习,李永乐的线代讲义很不错

已知n阶方阵A的伴随矩阵是奇异矩阵,伴随矩阵各行元素之和为3.则Ax=0的基础解系

由已知,|A*|=0,A*(1,1,...,1)^T=3(1,1,...,1)^T所以r(A*)=1所以r(A)=n-1所以AX=0的基础解系含1个向量.因为AA*=|A|E=0所以3A(1,1,..

第六题=.=线代大神进,关于基础解系和系数矩阵

A分成三行行向量b1,b2,b3有b1a1=0,b2a1=0,b3a1=0b1a2=0,b2a2=0,b3a2=0转置a1Tb1T=0,a1Tb2T=0,a1Tb3T=0a2Tb1T=0,a2Tb2T

设矩阵A,则齐次线性方程组AX=0包含的基础解系的个数为?

A=1111243135244635r2-2r1,r3-3r1,r4-4r11111021-102-1102-11-->1111021-100-220000所以r(A)=3所以AX=0的基础解系含n-

求解齐次线性方程组的基础解系

这个一般是自由未知量取x3,x4,分别取0,1和1,0得基础解系(-1,1,0,1),(0,0,1,0)

matlab求解矩阵系数

估计没人会

线性代数 矩阵求基础解系的问题

|A-λE|=(2-λ)^2×(4-λ)λ=2,2,4λ=2,解(A-2E)X=0得基础解系,p1=(1,0,0)^Tp2=(0,-1,1)λ=2对应的特征向量p=k1p1+k2p2(k1,k2不同时

矩阵特征值的基础解系 怎么求出来的?如图线性代数矩阵特征值求解

再问:谢谢。但是怎么确定α1、α2分别取1和0的呢?再答:这种题有一个固定的套路,当你求出x1.x2.x3的函数关系时,一般就是分别取(1,0,x3)和(0,1,x3)再问:再问:谢谢。那这个题的基础

怎么样判断一个向量组是不是一个矩阵的基础解系

向量组是AX=0的基础解系须满足:1.线性无关2.向量组中向量的个数=n-r(A)再问:那是不是所有满足你说的基础解系都是AX=0的解啊?再答:矩阵都是AX=0的解??什么意思?

线性代数求正交矩阵中基础解系

把矩阵求阶梯型第二行加到第一行第三行加到第四行第二行的-1倍加到第三行变成0000三行为0有3个自由未知量所以ζ1=(2,1,1,0)1-1-11ζ2=(0,1,0,1)0000ζ3=(0,0,1,1

矩阵的正交 基础解系方面的问题(有图)

基础解系没有必要正负,只需一个向量就可,有正负意思应该是正负都可成为基础解系.后面的单位向量当然都应有正负.再问:哦谢谢了,那请问考试的时候只写正负的其中一个有关系吗会扣分吗还有就是什么时候应该写正负

求矩阵A的特征向量时,那个基础解系a是怎么算出来的?

对某个特征值λ,解齐次线性方程组(A-λE)X=0

线性代数求基础解系,这两个矩阵该怎么求啊,

方程不给出没法求到底是齐次还是非其次

矩阵的基础解系怎么求?

A是一个n阶方阵,r(A)=n-1所以AX=0的基础解系的解向量的个数为1又A的每一行元素加起来均为1则A(1,1,...,1)^T=(1,1,...,1)^T所以x=(1,1,...,1)^T是AX