求证 CP.BP分别平分角DCA.角ABD,
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 03:25:15
8再问:过程?再答: 再问:过程中的原因!再问:过程中的原因!再答:我的妈啊!你确定你不是幼儿园的
证明:过P作PE⊥AB,PF⊥BC,PG⊥CD,PH⊥AD,因为AP、BP、CP分别平分∠DAB、∠ABC、∠BCD,所以PH=PE,PE=PF,PF=PH,所以PH=PE=PF=PG=PH所以四边形
过点P作PF⊥AE于F,PG⊥BC于G,PH⊥AD于H因为BP,CP分别是∠DBC和∠ECB的角平分线所以PF=PG,PH=PG所以PF=PH所以AP平分∠BAC
1)∵BP平分∠CBD,∴点P到BC、BD的距离相等(角平分线上的点到这个角两边的距离相等)同理,∵CP平分∠BCE,∴点P到CB、CE的距离相等,∴点P到BD和CE(即AB、AC)的距离相等,∴点P
证明:作PM垂直AD于M,PN垂直BC于N,PG垂直AE于G.PB平分角DBC,则PM=PN.(角平分线性质);同理可证:PG=PN.故PM=PG(等量代换)所以,PA平分角BAC.(到角两边距离相等
如下:∠ACD=∠ABC+∠A=∠ABC+70°∠PCD=1/2*∠ACD=1/2*∠ABC+35°∠PCD=∠PBC+∠P∠PBC+∠P=1/2*∠ABC+35°∠P=35°
从P点分别作BC、AC、AB直线上的垂线,然后就可以证明三条线相等(平分线)了,然后直接得到P在∠BAC的平分线上.
∠BPC+∠PBC+∠PCB=180∠BPC+1/2∠ABC+1/2∠ACB=180(1)∠A+∠ABC+∠ACB=1801/2∠A+1/2∠ABC+1/2∠ACB=90(2)(1)—(2)得:∠BP
作点P垂直AC,BC,AB因为BP,CP是角平分线所以三条垂线都相等所以点P到AB,AC的距离相等,即AP平分角A补充下因为角平分线上的点到角两边距离相等嘛点P到AC,BC的距离相等,这是因为CP是角
设∠ABP=∠CBP=∠1,∠ACP=∠BCP=∠2,由△ABC:∠A=180°-2∠1-2∠2(1)由△PBC:∠BPC=∠P=180-∠1-∠2(2)(2)×2-(1)得:2∠P-∠A=180°∴
证明:过点P作PM⊥AB于M,PN⊥AC于N,PG⊥BC于G∵PM⊥AB,PG⊥BC,BP平分∠CBD∴PM=PG∵PN⊥AC,PG⊥BC,CP平分∠BCE∴PN=PG∴PM=PN∴AP平分∠BAC
证明:过P作三边AB、AC、BC的垂线段PD、PE、PF,∵BP是△ABC的外角平分线,PD⊥AD,PF⊥BC,∴PD=PF(角平分线上的点到角两边的距离相等),∵点P在∠BAC的角平分线上,PD⊥A
∠PCD为△PBC外角,故①∠PCD=∠PBC+∠BPC∠ACD为△ABC外角,故②∠ACD=∠ABC+∠BAC将①式乘以2得2∠PCD=2∠PBC+2∠BPC...③其中2∠PCD=∠ACD.④2∠
关系:∠BPC=90°+1/2∠A证明:在ABC中,∠ABC和∠ACB的平分线相交于点P所以∠BPC=180°-(∠PBC+∠PCB)=180°-(1/2∠ABC+1/2∠ACB)=180°-1/2(
证明:作PM⊥AB于点M,PN⊥AC于点N,PO⊥BC于点O∵BP平分∠DBC∴PM=PO∵CP平分∠BCE∴PN=PO∴PM=PN∴点在∠A的平分线上
∠ACM=∠A+ABC∠PCM=∠P+∠PBC已知∠ABC=2∠PBC∠ACM=2∠PCM则2∠PCM=∠A+ABC=∠A+2∠PBC=∠A+2∠PCM-2∠P可求∠A=∠P再问:∠A=∠P?
在AB上取一点E,使得AE=AC,连接EP,那么在三角形AEP和三角形ACP中AP=AC角EAP=角CAPAP=AP三角形AEP和三角形ACP全等.角ACP=角AEP为锐角,那么角BEP为钝角,所以B
过P点分别作AE\AD\BC\的垂线段,垂足分别为XYZ因为BP平公角CBD,所以PY=PZ,(角平分线的性质)同理可得PX=PZ得PX=PY=PZ,则AP平分∠BAC,(角平分线的性质逆定理)
过点P做PM⊥AE,PN⊥AF,PK⊥BCPB平分∠CBEPM=PKPC平分∠BCFPK=PNPM=PNAP平分角BAC
过P依次向AB、BC、CD、AD作垂线,垂足依次为E、F、G、H.∵AP平分∠BAD、PH⊥AH、PE⊥AE,∴PH=PE,又AP=AP,∴Rt△PAH≌Rt△PAE,∴AH=AE.······①∵P