求证 是圆的切线

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 00:19:34
求证 是圆的切线
已知PA、PB是圆O的切线,PCD为割线,求证AC*BD=AD*BC

PA切圆O于A所以角PAC=角PDA所以三角形PAC相似三角形PDA所以AC/AD=PC/PA同理三角形PBC相似三角形PDB所以BC/BD=PC/PB因为PA、PB切圆O于A、B所以PA=PB所以A

圆的切线怎么证明AB是圆O的直径,AB=AC,BC与圆O交于点D,且DE垂直AC求证 DE是圆O的切线另一题:AB是圆

证切线有三种办法①与圆只有一个交点的直线(不太常用)②有已知交点,连半径,证垂直(根据切线判定定理)③无已知交点,作垂直,证半径(根据直线与圆的位置关系,d=r)第一题已知交点D,所以想到连半径所以只

ab是圆o的直径,AC是弦,直线EF经过点C,AD垂直EF于点D,求证EF是圆O的切线

你问的∠DAC=∠BAC,是根据切线定理的来的弦切角=弧所对的圆周角

一道数学题,圆那章的AB是○O的直径,BC是○O的切线,切点为B,OC‖AD,求证DC是○O的切线

因:三角形AOD为等腰三角形故:角OAD=角ODA(1)因:AD||OC故:角ODA=角DOC(2)角OAD=角BOC(3)由(1)(2):角OAD=角DOC(4)由(3)(4):角BOC=角DOC(

AB,AC是圆的切线,P是BC延长线上的任意一点,PD也是切线,连接AD交圆于点E,连接PE,求证PE也是圆的切线.

本题要证明PE也为圆切线,等价于证明AD⊥PO解答过程较简辅助线如图:易得OM*OA=OB^2=OD^2→△ODM∽△OAD→∠MDO=∠DAO易得AM⊥ABOD⊥DP→PDOM四点共圆→∠MPO=∠

如图,ab是圆o的直径,点e在圆o外,ae交圆o于c,cd是圆o的切线,交be于d,且de=db,求证be是切线.

连接BC,∵AB是直径,∴BC⊥AE,∵DE=DB,∴DC=DB=1/2BE(直角三角形斜边上中结等线斜边的一半),连接OD、OC,∵OD是切线,∴∠OCD=90°,∵OD=OC,OC=OB,∴ΔOD

已知AB是圆O的直径,BC是圆O的切线,切点为B,OC平行于AD,求证DC是圆O的切线

OA=OD=R,∠OAD=∠ODAOC‖AD,∠ODA=∠COD,∠OAD=∠BOC即∠COD=∠BOC又OB=OD=R,OC=OC三角形COD≌三角形COBBC是圆O的切线,切点为B,即CB⊥OB则

如图,PA为圆O切线,A为切点,OP平分角APC 求证:PC是圆O切线

连接OC∵OB=OC∴∠OBC=∠OCB∵PO∥BC∴∠AOP=∠OBC,∠COP=∠OCB∴∠AOP=∠COP∵PO=PO,OC=OA∴△OAP≌△OCP∴∠OAP=∠OCP∵PA是切线,AB是直径

如图,PA为圆O的切线,A为切点,OP平分角APC, 求证:PC是圆O的切线

连接oaoc,两个三角形相似,角pco等于九十度

如图,已知圆O中,AB是直径,过B点作圆O的切线,在切线上任取一点C,连接CO,若AD//OC,求证CD是圆O的切线

证明:∵AD//OC∴∠COB=∠DAO【同位角相等】∠COD=∠ODA【内错角相等】∵OA=OD∴∠DAO=∠ODA∴∠COB=∠COD又∵OB=OD,OC=OC∴⊿COB≌⊿COD(SAS)∴∠C

已知AB为圆O的直径,过B点作圆O的切线BC,连接OC,弦AD平行OC.求证:CD是圆O的切线.

证明:连接BD交OC于E因为AB是直径所以∠ADB=90度所以AD⊥BD因为O为AB中点,AD平行OC所以E为BD中点所以OC⊥BD因为OD=OB所以OC垂直平分BD所以CD=BC因为BC为圆O的切线

如图,已知AB是圆O的直径,BC是圆O的切线,切点为B.OC平行于弦AD.求证:DC是圆O的切线.

OA=OD=R,∠OAD=∠ODAOC‖AD,∠ODA=∠COD,∠OAD=∠BOC即∠COD=∠BOC又OB=OD=R,OC=OC三角形COD≌三角形COBBC是圆O的切线,切点为B,即CB⊥OB则

如图,已知ab是圆o的直径,ca是圆o的切线,bd‖co,求证:cd是圆o的切线

证明:连接OD∵BD∥CO∴∠B=∠COA∵∠B=1/2∠DOA∴∠DOC=∠COA连接AD所以AD⊥BD∵BD∥CO∴∠OCD=∠BDE(E为CD延长线一点)∠DAB=∠BDE∠DAB+∠B=90°

圆 切线 证明题如图AB是圆o的直径,圆o过BC的中点D,DE垂直AC,求证:DE是圆o的切线,

连接AD,OD,所以OD平行于AC,所以角ADO=角CAD,又因为,角CAD+角ADE=90度,所以角ADE+角ADO=角EDO=90度,所以OD垂直于ED,所以:DE是圆o的切线

AB是圆O的直径,点D在圆O上,BC为圆O切线,AD∥OC,求证:CD是圆O的切线.

连接OD,∵AB是圆O的直径,BC是圆O的切线∴∠CBO=90°∵OD=OB,CD=CB,OC=OC∴△COD≌△COB∴∠CDO=∠CBO=90°∴CD是圆O的切线再问:可是,题目并没有写CD=CB

AB为非直径的弦,角CAE=角B,求证:EF是圆O的切线

过A做直径AD,连接CD由圆的性质可知:∠ACD=90°所以∠BAD+∠CDA=90°(1)∠CDA与∠B同弧AC所以∠CDA=∠B由于∠CAE=∠B所以∠CDA=∠CAE(2)由(1)(2)得∠BA

已知AB是圆o的直径,AP是圆o的切线,A是切点,BP与圆o交于点C,若D为AP的中点,求证:直线CD是圆o的切线.

联结OD、OC,因D是AP的中点,O是圆心,所以OD是三角形APB的中位线,因此角ADO与角P相等,角PCDD等于角CDO,角OCB等于角DOC,角PCD加角DCA等于90°,所以角ODC加角DCO等

已知P是圆O外一点,PA,PB是圆O的两条切线,切点分别是A,B,BC是直径.求证AC平行OP

证明:连接OA,OB,AB∵PA,PB是⊙O的切线∴∠OAP=∠OBP=90°∵OA=OB,OP=OP∴△OAP≌△OBP∴PA=PB,∠APO=∠BPO∴AB⊥PO∵BC是直径∴∠BAC=90°即A