求证:不论x,y取何非零实数,1 x 1 y=1 (x y)总不成立
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 08:42:25
∵x^2=yz∴x+y+z=xyz=x^3x^3-x=y+z≥2根号(yz)=2|x|x(x^2-1)≥2|x|当x<0时,x(x^2-1)≥-2xx^2
原式=(x+y)²-2(x+y)+1+2=(x+y-1)²+2所以都不会小于2
1)证明:x^2+y^2-4mx+2my+20m-20=0可化为(x-2m)^2+(y+m)^2=5(m-2)^2当m=2时,C为一个点,则该定点坐标为(4,-2)将该定点带入原方程C,得0=0,与m
y=k(x+1),当x+1=0,即x=-1时,y=0,所以一次函数y=kx+k,不论k取任何非零实数,函数图象一定会过点(-1,0).故答案为(-1,0).
园C的圆心为O(-1,-2)半径为sqrt(6)m(x+1)=y+1直线恒过N(-1,-1)ON
(1)证:x²-(2k+1)y-4=0(1)y=x-2(2)(2)代入(1)x²-(2k+1)(x-2)-4=0令x=24-0-4=0,等式成立,此时y=x-2=2-2=0即无论k
(1)不论m取何实数,函数的图像与x轴有交点,指的是x^2-mx+m-1=0一定有解,这个可以用判别式来证,因为△=(-m)^2-4(m-1)=4>0所以x^2-mx+m-1=0有两个不同的实数根,因
根据题意,函数对应的方程有两个正数解,即:判别式>0,且x1+x2>0,x1x2>0根据韦达定理x1+x2=-b/a=m²+8,由于对于m∈R,都有m²+8>0x1x2=c/a=m
x^2-4x+6=x^2-4x+4+2=(x-2)^2+2>=2>0
解x^2-4x+4+y^2-2y+1=(x-2)^2+(y-1)^2>=0所以选A
x²-4x+y²-6y+13=(x²-4x+4)+(y²-6y+9)=(x-2)²+(y-3)²≥0
证明:x2+y2+4x-6y+14=x2+4x+4+y2-6y+9+1=(x+2)2+(y-3)2+1,∵(x+2)2,≥0,(y-3)2≥0,∴(x+2)2+(y-3)2+1≥1,∴不论x、y取何值
-x2+4x-5=-(x2+4x+4)-1=-(x-2)2-1-(x-2)2小于等于0,所以-(x-2)2-1恒小于零
x²+y²+2x-4y+7=x²+2x+1+y²-4y+4+7-1-4=(x+1)²+(y-2)²+2≥2因为(x+1)²和(y-
(2m-1)x的平方-2mx+1=0△=4m²-4(2m-1)=4m²-8m+4=4(m-1)²≥0所以不论m取何值时,关于x的方程(2m-1)x的平方-2mx+1=0总
证明:原式=x²+4x+y²-6y+13=(x²+4x+4)+(y²-6y+9)=(x+2)²+(y-3)²≥0故不论x,y取何值,原式都为
y=x+(m+4)x-2m-12Δ=(m+4)+4(2m+12)=(m+4)+8m+48不论m取任何实数Δ>0不论m取任何实数,函数的图像总与x轴有两个交点
Δ=9(m-1)^2-4(m^2-2m-3)=9m^2-18m+9-4m^2+8m+12=5m^2-10m+21=5(m-2)^2+1不论m为何实数,(m-2)^2≥0,∴Δ≥1>0∴抛物线与X轴必有
把方程写成以k为未知数的形式:(x-y-2)k+x+y=0解方程组x-y-2=0x+y=0得x=1,y=-1故L过定点(1,-1)
证明:由题意可知a=2,b=1,c=√3(根号3);∴此椭圆与y轴交点为(0,2),(0,-2)∵直线l:y=mx+1横过点(0,1)∴此点在椭圆内部∴将l:y=mx+1代入方程c:可得(m∧2+4)