求证:四边形一组对边中点的连线必与对角线互相平分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 14:45:50
有很多证明方法,楼上用全等三角形的证法,但忘说了O点由来.我用平行四边形的证法.已知:ABCD为平行四边形,E,F为AB,CD的中点,连接EF,求证:EF平分AC和BD.证明:设EF交BD于P点.∵A
设AD和BC的中点为M,N,连接AC取中点为O,连接OM,ON.在三角形OMN里,ON=1/2ABOM=1/2CD得MN
证明:取AD的中点G,连接EG、FG∵G是AD的中点,E是AC的中点∴GE是△ACD的中位线∴GE=CD/2∵G是AD的中点,F是BD的中点∴GF是△ABD的中位线∴GF=AB/2∵在△EFG中:EF
已知:ABCD为平行四边形,E为BC的中点,F为CD的中点,BD为平行四边形的对角线.AE与BD相交于H,AF与BD相交于G.求证:H,G是BD的三等分点.证明:连AC与BD相交于O,由于AO=CO,
平行四边形ABCDE、H为CD边和AB的中点连接AE、CH分别交于对角线BD于F、G可以得到△DEF≌△BHG∴DE=G∴△DCG≌△BCF∴DG=CF又∵AE‖CH∴DF=FG=GB所以得证孩子还是
任意四边形的4个顶点为:A,B,C,D.设AB的中点为a,BC的中点为b,BD的中点为c,CD的中点为a',DA的中点为b',AC的中点为c'.显然在三角形abc和三角形a'b'c'中,ab‖a'b'
MN=MA+AD+DN①MN=MB+BC+CN②注意MA+MB=0,ND+NC=0①+②2MN=AD+BCMN=(AD+BC)/2
已知:如图,四边形ABCD中,AB∥CD,∠A=∠C.求证:四边形ABCD是平行四边形.证明:∵AB∥CD,∴∠A+∠D=180°,∠B+∠C=180°.∵∠A=∠C,∴∠B=∠D.∴四边形ABCD是
如果ABCD为四边形,连接AC,BD,根据三角形中位线定律证明得到其四边形对应两边相等,那就是平行四边形啦
有一组对边平行另一组对边不平行的四边形不是平行四边形,如图1中,已知EH∥FG,EF不平行HG,则四边形EFGH是梯形;只有一组对角相等的四边形不是平行四边形,如图2中,已知∠A≠∠C,∠B=∠D,由
这是一个任意凸四边形已知:四边形ABCD,E,F分别是对角线AC,BD的中点求证EF
从位置关系来讲,任意四边形一组对边中点连线段与两条对角线必然不平行.从大小关系来讲,任意四边形一组对边中点连线段小于两条对角线之和的一半.再找个第三边的中点,连接三个中点之后,根据中位线定理和三角形的
空间四边形A-BCD的对边相等,取AB中点M,CD中点N,因为AC=BDAD=BD所以三角形ACB全等于三角形BDA,所以角ABC=角BAD,所以三角形BCM全等于三角形ADM所以DM=CM所以MN垂
空间四边形定义中规定空间四边形4边中点在一个平面上,那这4点所连成的线段就在一个平面上
如果ABCD为四边形,连接AC,BD,根据三角形中位线定律证明得到其四边形对应两边相等,那就是平行四边形啦
设ABCD的坐标分别求出全部点的坐标就可以了,然后证明其中2条的交点在另外一条上,全是算数的,没推理的,自己算吧
利用三角形中位线来证再问:要怎么证?是平行四边形还好证些,但四边形我不知道。可以告诉我怎样证吗,谢谢~~~~再答:任意四边形abcd,连接四边形的两条对角线ac、bd,再连接相邻各边中点(ab中点为e
空间四边形ABCD,AB、BC、CD、DA中点分别为E、F、G、H.EG、FH中点分别为M、N.向量AM=(AE+AG)/2=[AB/2+(AC+AD)/2]/2=(AB+AC+AD)/4同理可得AN
连接AC,取AC的中点E,连接ME,NE因为ME,NE为中位线所以NE=AB/2,ME=CD/2从而EN+ME=(AB+CD)/2又因为EN+ME>MN所以MN
如图 (1)一组对边的平方和等于另一组对边的平方和AB²=AM²+BM²,CD²=CM²+DM²,∴AB²+CD