求证:当X趋于X0时,x^n具有连续性

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 21:36:01
求证:当X趋于X0时,x^n具有连续性
证明函数的极限证明:当x0不为0时、1/x趋于1/x0(x趋于x0).(要求用e-€定义证明)

由|1/x-1/x0|=|(x-x0)/(x·x0)|=|(x-x0)|/|(x·x0|所以,对任意的e>0,只需要取d=min{|x0|²e/2,|x0|/2}则当0

当X趋于无穷大时 [x^2/(x^2+1)]^n (也就是x平方除以x平方+1 的N次方) 的极限是多少?

你确定是(x²/(x²+1))^n而不是(x²/(x²+1))^x²如果是lim[x->∞](x²/(x²+1))^n,首先lim

x趋于x0,lim|f(x)|=0,根据函数极限的定义证明x趋于x0时limf(x)=0

根据lim|fx|=0有对于任意的ε>0,存在δ>0,当|x-x0|

当x趋于0时,arctan(sinx/x)极限是多少,

lim(x->0)arctan(sinx/x)=arctan1=π/4

在函数极限定义中,当x趋于x0时,为什么要强调x不等于x0,急,如果x等于x0会出现什么情况

郭敦顒回答:当x0为分母,x→x0时,x0≠0,则可进行分式计算,而分母等于0没有意义,就是不能计算之意.再则,x→x0这是相对的,而x=x0则是绝对的,在实际运用中的结果x→x0与x=x0是等同的,

当x趋于无穷时sin(nπ)的极限存在吗

判断函数f(x)是否有极限,即:在其定义域内看①f(x)是否单调;②f(x)是否有界.显然f(x)是有界的【-1,1】,但是f(x)在定义域内不单调,所以没有极限.

f(x)=x/(x+1),当x0=2时,求其n阶泰勒公式

同学,这个题其实很简单.把f(x)=x/(x+1)化简一下,为1-1/(x+1)第二项是1/(x+1)又可以变换为1/(x-2+3),提出系数1/3.可以变化为1/3*1/[1+(x-2)/3]可以再

函数极限的定义在定义里有这样一句话如果当x从x0的左边(或右边)无限趋于x0时,函数f(x)无限地趋于一个确定的常数A

XO-0只是要标明从左边往X0靠近0说的只是增量为无穷小以便说明x是趋近于x0的x0+0也是如此加零减零只是表明不同方向的增量罢了

设f(x)有三阶导数,当x趋于x0时,f(x)是x-x0的二阶无穷小,问f(x)在x0处的泰勒展开式有何特点?

f(x)是x-x0的二阶无穷小=>lim(x->x0)f(x)/(x-x0)^2=A(A≠0)=>f(x0)=0,f'(x0)=0lim(x->x0)f(x)/(x-x0)^2洛必达法则=lim(x-

当x趋于0时,ln(1+x)~x 为什么?

相似.可以等价替换在合适的情况下

求导 lim x趋于x0 f(x)-f(x0)=f '(x0)?

limx趋于x0[f(x)-f(x0)]/(x-x0)=f'(x0)这个是导数的定义,没有为什么,人家规定的.再问:导数的定义不是[f(x)+deltax-f(x0)]/deltax吗?再答:这个是另

如果lim(x趋于x0)f(x)=3,那么必存在x0的某邻域,当x在该邻域内(x不等于x0),恒有f(x)大于0,为什么

极限的局部保号性.用极限定义:取ε=1,必存在x0的某邻域,当x在该邻域内(x不等于x0),恒有:3-ε0

二维随机函数当X趋于无穷小,Y趋于无穷大时,函数趋于1还是0

因为归一性,在x,y取值范围内的积分(或者级数)必为1,因此无穷大的时候分布函数必须趋于0,不然积分(或者级数)不会收敛

h趋于0时,(f(x0+2h)-f (x0+h))h是否等于f(x+h)的导数

(f(x0+2h)-f(x0+h))/h用洛必达法则对h求导,即得=(2f'(x0)-f'(x0))/1=f'(x0)

lim[(1+x)^n-1]/x当x趋于0时求极限n是正整数

lim[(1+x)^n-1]/x(这是0/0型,运用洛必达法则)=limn(1+x)^(n-1)=n

证明 f(x)=3^n/n!当n趋于无穷时limf(x)=0.

你题目很怪异,f(x)中没有x,是f(n)?3^n无界,所以你证明不对根据斯特林公式,n!=[根号(2pin)][(n/e)^n][e^(t/12n)]其中01,所以f(x)又f(x)>0,[3e/n

当x趋于0时 ln(1+x^n)的等价无穷小是什么

有个等价无穷小是ln(1+x)~x所以ln(1+x^n)~x^n

当X趋于1时,X的N次幂-1再除以(X-1)的极限等于多少?WHY

∵X的N次幂-1=(X-1)〔X(N-1)次幂+X(N-2)次幂*1+***+X*1(N-2)次幂+1(N-1)次幂〕=(X-1)〔X(N-1)次幂+X(N-2)次幂+***+X+1〕∴X的N次幂-1

求{(x+1)的n次方根与1的差}/x当n 趋于无穷时的极限

是否题目有错,应该求x→0的极限吧?公式:a^n-1=(a-1)[a^(n-1)+a^(n-2)+...+1](x+1)^n-1=x[(x+1)^(n-1)+(x+1)^(n-2)+...+1]因此l

已知f(x)在x0处可导,则当h趋于0时,f(x0+h)−f(x0−h)2h趋于(  )

由题意,f(x0+h)−f(x0−h)2h=12[f(x0+h)−f(x0)h+f(x0)−f(x0−h)h]∵f(x)在x0处可导,∴当h趋于0时,f(x0+h)−f(x0−h)2h趋于12[f′(