f(x)=arcsin(√1−x2)的反函数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 19:34:43
f’(x)=arcsin(x-1)^2先求出f(x)=∫arcsin(x-1)^2dx,由于f(0)=0,f(x)=∫(0,x)arcsin(y-1)^2dy然后对f(x)进行积分:∫(0,1)f(x
是!arcsin(sinx)=x同时又不存在定义域的区别,那么这两个函数就是同一个函数了
再问:2xdx=du这个地方有错误把!2(x-1)dx=du才对呢。。。我找到答案了,写成∫f(x)d(x-1),在算就可以啦!
f(x)=arcsin(√x/2)f(x)′={1/√[1-(√x/2)^2]}*(1/4)*x^(-1/2)
反三角函数y=arcsinx的定义域是[-1,1],则-1≤sinx≤1====>>>>>x∈R
函数y=arcsinx的定义域[-1,1]值域[-π/2,π/2]是单调递增函数y=sinx在定义域R上不是一一对应的关系,在定义反正弦时就取了x在[-π/2,π/2]范围内此时y就在[-1,1]内就
f(g(x))=e^(arcsing(x))=x-1∴arcsing(x)=ln(x-1)g(x)=sin[ln(x-1)]首先g(x)的值域是y=arcsinx里的定义域,即g(x)∈[-1,1]g
1、[(1-x²)/2]值域为(-无穷,0.5)y值域为【0,π/3】及【5π/3,4π】2、【0,2π】抢答时间有限不能写请详细过程
arcsin定义域是[-1,1]所以-1
令t=sin^2x,则sinx=√t和-√t.若sinx=√t,即x=arcsin√t所以f(t)=arcsin√t/√t.若sinx=-√t,x=-arcsin√t.f(t)=arcsin√t/√t
答案为2/(1+x^2)吧.由题得siny=2x/(1+x^2).两边同时对x求导(cosy)*dy/dx=2(1-x^2)/(1+x^2)^2cosy=根号下1-sin平方y.代入化简得dy/dx=
用公式(arcsin(x-1))'=1/√1-(x-1)平方=1/√1-x平方+2x-1=1/√2x-x平方
令u=(1-x^2)/(1+x^2)然后用复合函数求导公式.最后结果倒是出人意料地简单:-2/(1+x^2)再问:该是-2x/(|x|(x^2+1))吧。。。昨天算起来很复杂就懒得化了。。。再答:你的
解:要使函数y=arcsin√2x/(2x-1)有意义,则必有:2x/(2x-1)≥0,且2x-1≠0即:形成不等式方程组:2x≥0,2x-1>0;2x≤0,2x-11/2,x≤0∴函数y的定义域为:
∵x^2+x+1=(x+1/2)^2+3/4≥3/4∴3/4≤x^2+x+1≤1∴arcsin(3/4)≤arcsin(x^2+x+1)≤π/2∴y=arcsin(x^2+x+1)的值域是[arcsi
因为:(arcsinx)'=1/√(1-x²)0
按部就班套公式
dyf'(arcsin(1/x))—=-———————dxx√(x^2-1)
y'=f'(arcsin1/x)*(arcsin1/x)'=f'(arcsin1/x)*1/√(1-1/x^2)*(1/x)'=-f'(arcsin1/x)*1/√(1-1/x^2)*1/x^2
1,f(x)=(πtansecx)^6f'(x)=[6(πtansecx)^5]×[πsec^2(secx)]×[secxtanx]=6π^6(tansecx)^5×(secsecx)^2×secx×