求锥面z=√(x^2 y^2)被柱面z^2=2x所割下部分的曲面面积

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 08:32:22
求锥面z=√(x^2 y^2)被柱面z^2=2x所割下部分的曲面面积
求锥面z= √x^2+y^ 2与半球面 z= √ 1-x^2-y^ 2所围成的立体的体积

两个办法:一个是用积分,一个是用立体角①用积分用球面坐标,设半径r与z轴夹角为φ,r在XOY平面上投影与x轴夹角为θ则积分区域为:0≤r≤1,0≤φ≤π/4,0≤θ≤2π两曲面所围成立体体积为V=∫d

求∫∫∫sinzdv,其中Ω由锥面z=根号(x^2+y^2)和平面y=π围成

本题适合用截面法来计算用竖坐标为z的平面来截立体,得到的截面方程为D:x^2+y^2=z^2,截面为圆,其面积为:πz^2∫∫∫sinzdv=∫sinz(∫∫dxdy)dz中间那个二重积分的积分区域为

求锥面z=√(x^2+y^2)被柱面z^2=2x所割下部分的曲面面积

不需要那样做由z=√(x^2+y^2)和z^2=2x可得曲面在xoy平面的投影为Dxy:(x-1)^2+y^2≤1dz/dx=x/√(x^2+y^2),dz/dy=y/√(x^2+y^2)√((dz/

求由锥面z=k/R *√x²+y²(这是根号下)z=0及圆柱面x²+y²=R&#

对于z=F(X,Y),A=∫∫DDA=∫∫D√[1+(FX)2+(Fy)的表面积2]DXDY锥面Z=√(X2+Y2)是圆柱形表面X2+Y2=2倍的切削积分区域D为:0≤X≤2,-√(2X-X2)1,0

求锥面z=根号(x^2+y^2)被圆柱面x^2+y^2=2x割下部分的曲面面积(是曲面积分),

对于z=f(x,y),曲面面积为A=∫∫DdA=∫∫D√[1+(əf/əx)²+(əf/əy)²]dxdy锥面z=√(x²+y&#

证明锥面z=2√x^2+y^2被柱面x^+y^=2x所截得的有限部分的面积为√5π

可以用曲面积分来求.因为曲面是锥面z=2√x^2+y^2的一部分.满足z'x=2x/√x^2+y^2,z'y=2y/√x^2+y^2设∑表示x^2+y^2=2x所围成的圆域,S∑表示这个圆的面积.所求

球面x^2+y^2+z^2=50被锥面x^2+y^2=z^2所截曲线方程是什么?怎么求?

解这两个方程所组成的方程组即可.两式相减:z²=50-z²,得:z=5或-5故x²+y²=25因此曲线是两个半径为5的圆.

计算二重积分∫∫(y^2-z)dydz+(z^2-x)dzdx+(x^2-y)dxdy 其中E 为锥面z=根号下(x^2

补一个面(构成封闭曲面),用高斯公式:补面∑1:z=h取上侧(构成封闭圆锥面的外侧)x²+y²≤h²原积分=∫∫(y^2-z)dydz+(z^2-x)dzdx+(x^2-

锥面z^2=x^2+y^2被圆柱面x^2+y^2=2ax所截部分的曲面面积

∵锥面z²=x²+y²被圆柱面x²+y²=2ax所截∴所截部分的曲面面积在xy平面上的投影是D:x²+y²=2ax∵αz/αx=x

∫∫∫(x+y+z)∧2dV,其中Ω由锥面z=√(x∧2+y∧2)和球面x∧2+y∧2+z∧2=4所围立体,

用球坐标算:原式=∫[0,2π]dθ∫[0,π/4]dφ∫[0,2](sinφcosθ+sinφsinθ+cosφ)^2*ρ^4sinφdρ=32(2-√2)π/5

∫∫xdydz+ydzdx+(z^2-2z)dxdy 其中∑为锥面 z=根号x^2+y^2 被平面z=0 和z=1所截得

Gauss公式.∂P/∂x+∂Q/∂y+∂R/∂z=1+1+2z-2=2z∫∫Σxdydz+ydzdx+(z²-2z)

∫∫e^z/√(x^2+y^2 ) dxdy,∑为锥面,z=√(x^2+y^2 )及平面z=1,z=2所围的立体表面的外

∫∫∑e^z/√(x^2+y^2)dxdyə[e^z/√(x^2+y^2)]/əz=e^z/√(x^2+y^2)=∫∫∫Ωe^z/√(x^2+y^2)dxdydz=∫[0,2π]d

已知锥面顶点在原点且准线为x^2/9-y^2/4=1.x-y-z+6=0求方程!

设M1(x1,y1,z1)为准线上的任意点,那么过M1的母线为:x/x1=y/y1/z/z1---(1)而且:x1^2/9-y1^2/4=1---(2)x1-y1-z1+6=0---(3)由(1),(

求锥面z=√ (x^2+y^2)与柱面z^2=2x所围立体在xoz面的投影.

/>要求锥面z=√(x^2+y^2)与柱面z^2=2x所围立体在xoz面的投影可以分开求锥面z=√(x^2+y^2)在xoz面的投影,和柱面z^2=2x在xoz面的投影,这两个投影重叠部分即为锥面z=

求锥面z=根号下x^2+y^2及旋转剖物面z=2-x^2-y^2所围成立体的体积

http://hi.baidu.com/522597089/album/item/d33979029fbb74761c9583ac.html#