求非其次线性方程组x1 x2 2x3 3x4=1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 23:17:50
求非其次线性方程组x1 x2 2x3 3x4=1
已知非其次线性方程组有解,他的增广矩阵列向量为什么线性相关

非齐次线性方程组Ax=b有解的充要条件是b可由A的列向量组线性表示所以(A,b)的列向量组线性相关.

一个线性代数简单题设四元非其次线性方程组的系数矩阵的秩为3,已知n1,n2,n3是它的三个解向量,已知图片条件,求方程组

齐次方程的基础解系的向量个数为4-r(A)=4-3=12*n1-(n2+n3)=(3,4,5,6)^T=a为一个基础解系齐次方程通解=ka非齐次方程的通解为特解+齐次方程通解即n1+k(3,4,5,6

线性代数解方程组解下列非其次线性方程组:20X1+10X2+10X3+15X4=705X1+5X2+10X3+15X4=

最好用矩阵解.20X1+10X2+10X3+15X4=70(1)5X1+5X2+10X3+15X4=35(2)5X1+15X2+5X3+10X4=35(3)8X1+10X2+10X3+20X4=50(

关于其次线性方程组解的问题(线性代数)

是.由已知ASi=b,i=1,2,3所以A(2S1-S2-S3)=2AS1-AS2-AS3=2b-b-b=0.所以2S1-S2-S3是AX=0的解

设其次线性方程组 ,问r取何值时方程组有非零解,并求一般解

系数矩阵=1-322-533-8rr3-r1-r2,r2-2r11-3201-100r-5r1+3r210-101-100r-5所以r=5时方程组有非零解此时一般解为c(1,1,1),c为任意常数.

非其次线性方程组AX=b中未知量的个数为n,方程的个数为m,系数矩阵A的秩为r,则()

因为是非齐次线性方程组,首要问题是方程组有解非齐次线性方程组有解的充分必要条件是r(A)=r(A,b)所以(D),(C)都不对当r=m时,m>=r(A,b)>=r(A)=r=m此时方程组有解.若r=m

求下列其次线性方程组的基础解系(我只有这么点分了),老师们

14171417141723011→0523→052339180321300114所以,原方程组与方程组x1+4x2+x3+7x4=0,5x2+2x3+3x4=0,x3+14x4=0同解,因此原方程组

线性代数关于求其次线性方程组基础解系和非其次线性方程组基础解析的问题

都取0有什么意义?齐次方程组一定有零解,我们要求的是非零解.用x3,x4表示x1,x2,也就是说x3,x4是自由未知量,要求取值是线性无关的,比如x3=1,x4=0和x3=0,x4=1.也可以取其它线

线性代数非其次线性方程组求通解!

因为导出组的基础解系含4-R(A)=2个解向量,所以关键是求另一个解向量.因为非齐次的两个解的差是齐次解,所以(b2-b1)是齐次解,方程通解为x=k1(0101)T+k2(01-10)T+(1010

其次线性方程组解的问题

第一个问题:克拉默法则仅适用于未知数个数等于方程个数的情况,当系数行列式不等于0的时候,方程组有唯一解,所以是具体的数,而当系数行列式不等于的时候,克拉默法则无能为力,所以就没有去求那些不唯一的解.你

线性代数,非其次线性方程组 x1+x2+x3+x4=1 -x2+2x3-x4=2 x3+2x4=-1的解

你怎么写出唯一解的,这个方程有自由未知量.方程未知数个数大于方程个数,所以一定有无穷解.再问:x1+ax2+x3+x4=22x1+x2+bx3+x4=42x1+2x2+3x3+cx4=1和上面的方程同

非其次线性方程组1、有唯一解2、无解3、有无穷多解4、仅有零解

仅供参考行列式不为0,说明此矩阵是非退化矩阵且秩为n说明此方程含有极大线性无关组的个数为n也就是向量组都相性无关,任何一组向量都无法被其他向量组线性表出所以无解

C1,C2,C3是三元非其次线性方程组Ax=b的三个先行无关的解 为什么说r(A)=1?

由已知C1-C3,C2-C3是Ax=0的线性无关的解所以3-R(A)>=2所以R(A)=1故有R(A)=1.

线性代数证明:齐次线性方程组Ax=0的x构成子空间,而非其次Ax=b的x不构成子空间.

验证对加法和数乘是否封闭就行了先看E={x:Ax=0}对任意常数a,b以及任意元素x,y∈EA(ax+by)=aAx+bBy=0所以ax+by∈E从而E是子空间再考虑F={x:Ax=b}对于任意x,y

齐次线性方程组 以及非其次线性方程组有解问题,系数行列式中有待定系数,问待定值为何时,有解,无解,

首先,只有当方程的个数等于未知量的个数时,才可以用系数行列式只用行列式可以解决的问题:(前提:A是方阵)1.齐次线性方程组AX=0|A|=0AX=0有非零解逆否命题就是|A|≠0AX=0只有零解2.非

求非其次线性方程组的通解X1+X2+X3+X4+X5=7

求基础解系时应该令常数项为0即X1=X4+5X5X2=-2X4-6X5X3=0

求常系数非其次线性微分方程的通解

说实话,你在百度上问这么大的问题一般是不会有什么好回答的,非齐次的通解=齐次下的通解+非齐次下特解.齐次下的通解用特征方程求,去看书上第7节.非齐次的特解有两种类型,书上第8节.你最好去看一下书,没有

求非其次线性方程组 x1+x2+2x3-x4=1;2X1+3X2+X3-2X4=4;3X1+4X2+3X3-3X4=5的

增广矩阵=112-11231-24343-35r3-r1-r2,r2-2r1112-1101-30200000r1-r2105-1-101-30200000方程组的全部解为:(-1,2,0,0)^T+