F(X)=F(x)在X=1处可导求a b

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 19:46:30
F(X)=F(x)在X=1处可导求a b
我想问一道数学题:若f(x)可导,f(x)的导数与f(x)相等,f(0)=1,求证f(x)=e^x

证明:由已知得f'(x)=f(x)即d[f(x)]/dx=f(x)分离变量d[f(x)]/f(x)=dx∴ln[f(x)]=x+C1∴f(x)=Ce^xC为任意常数又f(0)=1∴f(0)=Ce^0=

设f(x)为可导函数,且满足条件lim(x->0)[f(1)-f(1-x)]/2x=1,则曲线y=f(x)在(1,f(x

lim(x->0)[f(1)-f(1-x)]/2x=1lim(x->0)[f(1)-f(1-x)]/x=2即曲线在(1,f(1))处切线斜率为2

设函数f(x)在(-∞,+∞)可导,且满足f(0)=1,f'(x)=f(x),证明f(x)=e^x

f'(x)=f(x),即dy/dx=ydy/y=dx两边积分:lny=x+C两边取e指数:y=e^x+Cf(0)=e^0+C=1C=0所以,f(x)=e^x再问:两边积分那步是怎么得来的啊?再答:∫(

定义在R上的可导函数f(x)满足f(-x)=f(x),f(x-2)=f(x+2),且当x∈[2,4]时,f(x)=x^2

由f(-x)=f(x),f(x-2)=f(x+2)我们知道f(x)是偶函数且是周期为4的周期函数.f(x)=x^2+2xf'(2)求得f(x)=x^2-8x(x∈[2,4]),所以f(x)=x^2-1

设f(x)可到函数,且满足lim(f(1)-f(1-△x))/(△x)=-1,则曲线y=f(x)在点(1,f(x))处的

由题,设1-x=t,则lim[1+f(t)]/2(1-t)=-1,t趋向于1因此可知,limf(t)=-1,t趋向于1;又因为f(x)可导,故其连续,故f(1)=-1.

求分段函数f(x)=x+1 f(x)=x f(x)=1在x=0和x=1处的极限

第一个答案是1和2.第二个答案是0和1.第三个答案是1和1.再问:第一个f(x)的取值范围是x<0第二个是0≦x≦1第三个是x>1。还有是分段函数。希望看清楚,f(x)是一个式子再答:分段函数的话。你

设f(x)为可导函数,且满足lim[4+f(1-x)]/2x=-1,x趋于0时,求曲线y=f(x)在点(,f(1))处的

由题,设1-x=t,则lim[4+f(t)]/2(1-t)=-1,t趋向于1因此可知,limf(t)=-4,t趋向于1;又因为f(x)可导,故其连续,故f(1)=-4.同时,上极限式可变为:lim[f

证明:设f(x)在(-∞,+∞)连续,则函数F(x)=∫(0,1)f(x+t)dt可导,并求F'(x)

x+t=udx=duF(x)=∫(0,1)f(x+t)dtF(x)=∫(x,x+1)f(u)du=∫(0,x+1)f(u)du-∫(0,x)f(u)duF′(x)=f(x+1)-f(x)

讨论函数f(x)=xsin1/x,(x不等于0)和f(x)=0,(x=0) 在x=0处连续性与可导

分别求f(x)(X不=0)的左右极限,若左右极限相等且等于0,则f(x)在x=0处连续,同理,分别求左右导数,若相等,则可导

已知函数f(x)=ln(x+m),g(x)=e^x-1,F(x)=g(x)-f(x)在x=0处取得极值.

1、F(x)=g(x)-f(x)=(e^x-1)-ln(x+m)F'(x)=e^x-1/(x+m)当x=0时,F'(x)=0,即e^0-1/(0+m)=0,m=1F'(x)=e^x-1/(x+1)当x

设f(x)可导,F(x)=f(x)(1+|sinx|),若F(X)在点x=0处可导,则必有(?)

在0附近xo时F(x)=f(x)(1+sinx)x0时F'(x)=f'(x)+f'(x)sinx+f(x)sin'x[2]因为F(x)在x=0处可导所以x趋向于0-时于趋向于0+时F'(0)-=F'(

f(x)为可导函数,f(0)=1,f(x)'=2f(x),证明:f(x)=e^2x

两边同乘以e^(-2x),得e^(-2x)f'(x)=e^(-2x)*2f(x)e^(-2x)(f'(x)-2f(x))=0两边积分得e^(-2x)f(x)=cf(x)=c*e^(2x)因为f(0)=

f(x)在x=1可导 并且f(x)=1求Limf(1+2x)-f(1)/x 结果是多少?

公式没有写清楚?再问:已经解决了,不过还是谢谢你

已知定义在R上的可导函数f(x)的导函数为f'(x),满足f'(x)<f(x),且f(x+1)为偶函数,f(2)=1,则

首先,由f(x+1)为偶函数,f(2)=1可知,f(2)=f(1+1)=f(-1+1)=f(0)=1将x=0带入不等式,可知e^0=1=f(0),不等式不成立,所以0不是不等式的解,将A选项排除.将x

f(x)是奇函数,且可导,若f'(x+3)=f'(x) f'(x)=-1 f'(5)+f'(11)=

这种填空题最好办了.设y=-x,则满足题目条件,你说f'(5)+f'(11)等于几?再问:求详细的方法啊,要的不是答案。。。再答:我想跟你说这道题有问题。漏洞百出。再问:就是f’(11)=f'(8)=

定义在R上的函数f(x)不是常函数,f(x-1)=f(x+1),f(1+x)=f(1-x),则f(x)

f(-x-1)=f(-x+1)=f(1-x)=f(1+x)f(-x-1)=f[-(x+1)]=f(1+x)所以f(x)是偶函数

如果函数F(x)在R上处处可导F(0)'=1对于任意x,y恒有F(x+y)=F(x)+F(y)+2xy,求F(x)'?

f(0)=2f(0),f(0)=0f'(x)=lim[f(x+△x)-f(x)]/△x;△x→0=lim[f(x)+f(△x)+2x△x-f(x)]/△x=2x+limf(△x)/△x=2x+f'(0

设函数f(x)在x=1连续,且f(x)/(x-1)的极限存在,求证f(x)在x=1可导.

简单再问:怎么做?再答:再答:已发再问:我有点不懂为什么f(1)=0再答:因为当x趋向于1再答:x-1趋向于0再答:只有是0/0型再答:才存在极限再问:明白了

设f(x)可导,且f(0)=0,证明F(X)=f(x)(1+/SINX/)在x=0处可导

用定义求一下导数limx->0[F(x)-F(0)]/(x-0)=limx->0f(x)(1+|sinx|)/x=limx->0f(x)/x=limx->0[f(x)-f(0)]/(x-0)=f'(0

f(x)定义在(0,+无穷大) 当x>1时 f(x)>0,且f(xy)=f(x)+f(y) 解不等式f[x(x-1/2)

f(x)=f(x×1)=f(x)+f(1),f(1)=0当x>1时f(1)=f(x×1/x)=f(x)+f(1/x)=0因为f(x)>0所以f(1/x)