F(X)=F(x)在X=1处可导求a b
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 19:46:30
证明:由已知得f'(x)=f(x)即d[f(x)]/dx=f(x)分离变量d[f(x)]/f(x)=dx∴ln[f(x)]=x+C1∴f(x)=Ce^xC为任意常数又f(0)=1∴f(0)=Ce^0=
lim(x->0)[f(1)-f(1-x)]/2x=1lim(x->0)[f(1)-f(1-x)]/x=2即曲线在(1,f(1))处切线斜率为2
f'(x)=f(x),即dy/dx=ydy/y=dx两边积分:lny=x+C两边取e指数:y=e^x+Cf(0)=e^0+C=1C=0所以,f(x)=e^x再问:两边积分那步是怎么得来的啊?再答:∫(
由f(-x)=f(x),f(x-2)=f(x+2)我们知道f(x)是偶函数且是周期为4的周期函数.f(x)=x^2+2xf'(2)求得f(x)=x^2-8x(x∈[2,4]),所以f(x)=x^2-1
由题,设1-x=t,则lim[1+f(t)]/2(1-t)=-1,t趋向于1因此可知,limf(t)=-1,t趋向于1;又因为f(x)可导,故其连续,故f(1)=-1.
第一个答案是1和2.第二个答案是0和1.第三个答案是1和1.再问:第一个f(x)的取值范围是x<0第二个是0≦x≦1第三个是x>1。还有是分段函数。希望看清楚,f(x)是一个式子再答:分段函数的话。你
由题,设1-x=t,则lim[4+f(t)]/2(1-t)=-1,t趋向于1因此可知,limf(t)=-4,t趋向于1;又因为f(x)可导,故其连续,故f(1)=-4.同时,上极限式可变为:lim[f
x+t=udx=duF(x)=∫(0,1)f(x+t)dtF(x)=∫(x,x+1)f(u)du=∫(0,x+1)f(u)du-∫(0,x)f(u)duF′(x)=f(x+1)-f(x)
分别求f(x)(X不=0)的左右极限,若左右极限相等且等于0,则f(x)在x=0处连续,同理,分别求左右导数,若相等,则可导
1、F(x)=g(x)-f(x)=(e^x-1)-ln(x+m)F'(x)=e^x-1/(x+m)当x=0时,F'(x)=0,即e^0-1/(0+m)=0,m=1F'(x)=e^x-1/(x+1)当x
在0附近xo时F(x)=f(x)(1+sinx)x0时F'(x)=f'(x)+f'(x)sinx+f(x)sin'x[2]因为F(x)在x=0处可导所以x趋向于0-时于趋向于0+时F'(0)-=F'(
两边同乘以e^(-2x),得e^(-2x)f'(x)=e^(-2x)*2f(x)e^(-2x)(f'(x)-2f(x))=0两边积分得e^(-2x)f(x)=cf(x)=c*e^(2x)因为f(0)=
公式没有写清楚?再问:已经解决了,不过还是谢谢你
首先,由f(x+1)为偶函数,f(2)=1可知,f(2)=f(1+1)=f(-1+1)=f(0)=1将x=0带入不等式,可知e^0=1=f(0),不等式不成立,所以0不是不等式的解,将A选项排除.将x
这种填空题最好办了.设y=-x,则满足题目条件,你说f'(5)+f'(11)等于几?再问:求详细的方法啊,要的不是答案。。。再答:我想跟你说这道题有问题。漏洞百出。再问:就是f’(11)=f'(8)=
f(-x-1)=f(-x+1)=f(1-x)=f(1+x)f(-x-1)=f[-(x+1)]=f(1+x)所以f(x)是偶函数
f(0)=2f(0),f(0)=0f'(x)=lim[f(x+△x)-f(x)]/△x;△x→0=lim[f(x)+f(△x)+2x△x-f(x)]/△x=2x+limf(△x)/△x=2x+f'(0
简单再问:怎么做?再答:再答:已发再问:我有点不懂为什么f(1)=0再答:因为当x趋向于1再答:x-1趋向于0再答:只有是0/0型再答:才存在极限再问:明白了
用定义求一下导数limx->0[F(x)-F(0)]/(x-0)=limx->0f(x)(1+|sinx|)/x=limx->0f(x)/x=limx->0[f(x)-f(0)]/(x-0)=f'(0
f(x)=f(x×1)=f(x)+f(1),f(1)=0当x>1时f(1)=f(x×1/x)=f(x)+f(1/x)=0因为f(x)>0所以f(1/x)