f(x)=lg(x^2 1-x)是减函数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 19:54:45
f(x)=lg(x^2 1-x)是减函数
已知函数f(x)=lg(1-x)-lg(1+x)求 奇偶性 单调性

1-x>0且1+x>0;定义域:x∈(-1,1)f(x)=lg(1-x)-lg(1+x)=lg[(1-x)/(1+x)](1)f(-x)=lg[(1+x)/(1-x)]=-lg[(1-x)/(1+x)

已知函数f(x)=1/2[lg(kx)],g(x)=lg(x+1).

f-g的定义域为f与g的定义域的交集,易得f的定义域为{x>0},g为{x>-1}交集为{x>0}f=g我们得到lg[(kx)^(1/2)]=lg(x+1)又因为lg函数onetoone(一一对应)所

已知函数f(x)=lg(3+x)+lg(3-x) 求它的单调性

答:f(x)=lg(3+x)+lg(3-x),-30的单调递减区间[0,3)就是f(x)的单调减区间

已知函数f(x)=lg(1+x)+lg(1-x).

(1)要使函数f(x)有意义,须满足1+x>01−x>0,解得-1<x<1,∴函数f(x)的定义域为(-1,1);(2)由(1)知函数定义域为(-1,1),关于原点对称,对于任意x∈(-1,1),有-

已知函数f(x)=lg(2+x)+lg(2-x).

(1)x须满足2+x>02−x>0,∴-2<x<2,∴所求函数的定义域为(-2,2)(2)由于-2<x<2,∴f(x)=lg(4-x2),而g(x)=10f(x)+3x,g(x)=-x2+3x+4(-

已知函数f(x-3)=lg(x/x-6)

令t=x-3,则x=t+3,代入f(t)=lg[(t+3)/(t-3)]把t换成xf(x)=lg[(x+3)/(x-3)],这是解析式.f(x)=lg[(x+3)/(x-3)](x+3)(x-3)>0

求函数f(x)=lg(1+2x)-lg(1-3x)定义域

真数>01+2x>0x>-1/21-3x>0x

已知函数f(x)=lg(x+1),g(x)=2lg(2x+a),

(1)f(x)=lg(x+1),g(x)=2lg(2x-1)F(x)=lg(x+1)+2lg(2x-1)那么x+1>0,2x-1>0,得x>1/2(2)2f(x)≤g(x)有lg(x+1)≤lg(2x

f(x)=lg((1+sinx)/cosx)

cosx*cosx=1-sinx*sinxcosx*cosx=(1+sinx)*(1-sinx)所以(1+sinx)/cosx=cosx/(1-sinx)(1-sinx)/cosx=cosx/(1+s

已知函数f(x)=lg(x+1),g(x)=2lg(2x+1).

(1)原不等式等价于x+1>02x1>0x+1≤(2x1)2即x>124x25x≥0,即x>12x≤0或x≥54∴x≥54,所以原不等式的解集为{x|x≥54}(2)由题意可知x∈[0,1]时,f(x

已知函数f(x)=1/2lg(kx),g(x)=lg(x+1).

1,当k>0时,x>0且x+1>0,得x>0当k

f(x)=lg(3+x)+lg(3-x)定义域和奇偶性

真数大于03+x>0,3-x>0x>-3,x

设函数f(x)=lg(21−x

∵f(x)=lg(21−x+a),∴f(0)=0,∴lg(2+a)=0,∴a=-1.∴f(x)=lg(21−x-1),21−x-1>0,得1+x1−x>0,-1<x<1,令t=21−x-1,设-1<x

已知函数f(x)=lg(x+a/x-2)

函数y=x+a/x≥2√a,a∈(0,+∞),并且此函数有一个重要性质:在(0,√a]上单调递减,在[√a,+∞)上单调递增.(这个性质的证明比较简单,你自己证)因此,若04,最小值t(a)=f(√a

已知函数f(x)=lg(x+1),g(x)=2lg(2x+a)

(1)当a=-1时,求函数F(x)=f(x)+g(x)的定义域f(x)=lg(x+1),g(x)=2lg(2x-1)F(x)=lg(x+1)+2lg(2x-1)那么x+1>0,2x-1>0,得x>1/

f(x)=lg(x+根号x的平方-1)

非奇非偶x+根号x^2+1>0且x^2-1>0得x>1∵定义域不对称∴f(x)为非奇非偶函数(一般求函数的奇偶性先求定义域,关于原点对称则计算f(-x)然后利用用f(x)=f(-x)(偶)或f(x)=

f(x)=lg(x+根号x^2+1),

设g(x)=x+√(x²+1),先证明g(x)的单调性设x1√x1²=|x1|≥-x1,所以√(x1²+1)+x1>0同理,√(x2²+1)+x2>0所以[√(

求函数f(x)=lg[(x+1)/(x-1)]+lg(x-1)+lg(p-x)的定义域和值域

1,当p1时,定义域为(1,p)原式可化简为lg(x+1)(p-x)①1

设函数y=f(x)且.lg(lgy)=lg(3x)+lg(3-x)

lg(lgy)=lg(3x)+lg(3-x)=lg[3x(3-x)]∴lgy=3x(3-x)∴y=10^[3x(3-x)]=10^(9x-3x^2)=1000^(3x-x^2)∴f(x)=1000^(