f(x)=sinwx,(-pai 3,)最小值-2,w最小值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 23:25:32
已知函数f(x)=2sinwx(w>0)在区间[-π/3,π/4]上的最小值是-2,则w的最小值等于多少?解析:∵函数f(x)=2sinwx(w>0)在区间[-π/3,π/4]上的最小值是-2函数f(
(1)f(x)=a·b=(sinwx)^2+√3sinwxcoswx=1/2+(√3/2sin2wx-1/2cos2wx)=1/2+sin(2wx-π/6)因T=2π/2w=π,即w=1于是f(x)=
f(x)=coswx(根号3*sinwx+coswx)=(根号3)coswxsinwx+(coswx)^2=[(根号3)/2]sin2wx+(cos2wx)/2+1/2=sin(2wx+π/6)+1/
不知道,sorry
第二题(a+b)^2=c^2a^2+2a*b+b^2=c^2|a|=|b|=|c|,a方=b方=c方,式子一化,2a*b=a^22|a|*|b|*cosx=|a|*|a|cosx=1/2x=60°(不
f(x)=4cos(wx-π/6)sinwx-cos(2wx+π)=(4coswxcosπ/6+4sinwxsinπ/6)sinwx+cos2wx=2√3coswxsinwx+2(sinwx)^2+1
a·b=-(coswx-sinwx)(coswx+sinwx)+√3sin(2wx)=√3sin(2wx)-cos(2wx)=2sin(2wx-π/6)故:f(x)=2sin(2wx-π/6)+λ关于
条件上有w>0,所以 T=2π/|2w|=π/w=π/2,w=2,不用讨论.所以 f(x)=1/2-√2/2sin(4x+π/4).当4x+π/4=2kπ+π/2时,sin(4x+π/4)=1,f(x
f(x)=√3/2(1-coswx)+1/2sinwx=sin(wx-π/3)+√3/2故T=2π/w=πw=2(2)f(x)=sin(2x-π/3)+√3/2令2kπ-π/2
稍等再答:f(x)=(√3sinwx+coswx)*cosx=√3sinwxcoswx+coswxcoswx=√3/2*2sinwxcoswx+coswxcoswx=√3/2*sin2wx+(1+co
a·b=-(coswx-sinwx)(coswx+sinwx)+√3sin(2wx)=√3sin(2wx)-cos(2wx)=2sin(2wx-π/6)故:f(x)=2sin(2wx-π/6)+λ关于
请检查题目:f(x)=向量a*向量b?再问:你说的没错我打错了再答:f(x)=向量a*向量b=(coswx-sinwx)(-coswx-sinwx)+2√3sinwxcoswx=-cos2wx+√3s
f(x)=sinwx*sinwx-sinwxcoswx=(1-cos2wx)/2-(1/2)sin2wx=1/2-(1/2)(cos2wx+sin2wx)=1/2-(根号2/2)(sinπ/4cos2
f(x)=(sinwx)^2+根号3sinwx*coswx+2(coswx)^2=1+根号3/2sin(2wx)+[cos(2wx)+1]/2=sin(2wx+π/6)+3/2当x=π/6有第一个最高
(1)直接根据题目意思一步步求解就可以了,没有别的想法.在化简过程中只要注意两点:一个是二倍角公式的应用,另外一个是三角和公式的应用.最后根据f的最小值及对称轴来确定t,x.(2)先代入f求C,再根据
f(x)=2sinwx(√3coswx-sinwx)=2√3sinwxcoswx-2sin²wx=2√3sinwxcoswx+(1-2sin²wx)-1=√3sin2wx+(1-2
(1)∵f(x)=cos²ωx-sin²ωx+2√3sinωxcosωx=cos2ωx+√3sin2ωx=2sin(2ωx+π/6)又题意可得T=π,∴ω=1,∴f(x)=2sin
f(x)=a*b=(2sinwx,coswx+sinwx)*(coswx,coswx-sinwx)=(2sinwx)*(coswx)+(coswx+sinwx)*(coswx-sinwx)=2sinw