f(x)=x (2x 1)(x=a)为奇数,则
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 11:54:46
证明:令x2=0,则原等式化为:f(x1+0)+f(x1-0)=2f(x1)*f(0)f(x1)+f(x1)=2f(x1)*f(0)2f(x1)=2f(x1)*f(0)可得f(0)=1.令x1=0,则
(f(x1)+f(x2))/2-f((x1+x2)/2)=(2^x1+2^x2)/2-2^((x1+x2)/2)≥√(2^x1*2^x2)-2^((x1+x2)/2)(几何不等式)=0所以结论成立.
(II)证明:由已知得{f(x1)=lnx1-ax12-bx1=0f(x2)=lnx2-ax22-bx2=0,即{lnx1=ax12+bx1lnx2=ax22+bx2,两式相减,得:lnx1x2=a(
条件即为当x1>x2时,f(x1)>f(x2)此为增函数,当x=1,需有f(1)=3+3a>=0-->a>=-1(3-a)x+4a为增函数需有:3-a>0-->a
∵f(x)=2x1−x,∴f(ax)=2ax1−x,设x1<x2,则f(x1)-f(x2)=2ax11−x1-2ax21−x2=2a(x1−x2)(1−x1)(1−x2)∵x1-x2<0,a<0,∴2
为使函数连续,则分段函数左极限等于右极限左极限为limf(1-)=1,右极限为limf(1+)=a+blimf(1-)的意思是自变量从1的左边趋近于1时的函数极限,即左极限,同理limf(1+)所以第
不等式恒成立的意思就是函数在定义域上单调递增函数x>a的时候单调递增所以a
f(x)=x|x-a|的图象如图,其在,[a,+∞)上是一个增函数,∵对任意的x1,x2∈[2,+∞),且x1≠x2,(x1-x2)[f(x1)-f(x2)]>0∴f(x)在[2,+∞)上是增函数,故
inputx,yifx1,theny=1+2xprinty
由f(x1+x2)=f(x1)f(x2),得该函数类型为f(x)=b*a∧x(指数型函数)f(x)'=b(a∧x)㏑a所以f'(0)=blna=2所以a=e∧n,b=2/n所以f(x)=(2/n)e∧
记住错项相消法Cn=1.5(2n-1)-1.5(2n-1)3^(-n)前面的求和是1.5n^2(2n-1)3^(-n)的和设为SnSn=1/3+3*1/3^2+……+(2n-1)/3^nSn/3=1/
1.f’(x)=2x+a/(1+x)=0,2x^2+2x+a=0有不等的实根,4-8a>0,a
f(x)在x=1处左右导数存在再问:左右都存在?
取-X和X作x1,x2得f(X-X)+F(X+X)=2F(X).F(-X)-->F(0)+F(2X)=2F(X).F(-X)(1)再把x1,x2调换一下得F(-2X)+F(-X+X)=2F(X).F(
f(x1)-f(x2)=(1/3)[(x1-x2)(x1^2+x1·x2+x2^2)]-(a^2)(x1-x2)=(1/3)(x1-x2)(x1^2+x1·x2+x2^2-3a^2)|f(x1)-f(
(1)f(x)=x,即g(x)=ax^2+(b-1)x+1=0(ab属于Ra>0)若两根为c和d且c6a+3b-3/2即2a-b>0,b0,则b/2a-1得证(2)ax^2+(b-1)x+1=0两根为
我给你简单分析一下:[f(x1)+f(x2)]/2>f[(x1+x2)/2]从图像上看就是(x1,f(x1))与(x2,f(x2))的中点高于f函数图像x1,x2的中点.画出图来函数f显然是一个导数的
再问:题目f(x1)=0,为什么f‘(x1)=0再答:不完美,但计算实在太复杂,只能如此了。题目肯定没有错,盼有高手出更好解答。