f(x)=x (2x 1)(x=a)为奇数,则

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 11:54:46
f(x)=x (2x 1)(x=a)为奇数,则
函数f(x),x属于R,若对于任意实数x1,x2,都有f(x1+x2)+f(x1-x2)=2f(x1)*f(x2),求证

证明:令x2=0,则原等式化为:f(x1+0)+f(x1-0)=2f(x1)*f(0)f(x1)+f(x1)=2f(x1)*f(0)2f(x1)=2f(x1)*f(0)可得f(0)=1.令x1=0,则

已知函数f(x)=2的X次方,X1,X2是任意实数且X1不等于X2,证明0.5(f(x1)+f(x2))>f((x1+x

(f(x1)+f(x2))/2-f((x1+x2)/2)=(2^x1+2^x2)/2-2^((x1+x2)/2)≥√(2^x1*2^x2)-2^((x1+x2)/2)(几何不等式)=0所以结论成立.

已知f(x)=lnx-ax^2-bx若f(x)的图像与x轴交于A(x1,0),B(x2,0)(x1

(II)证明:由已知得{f(x1)=lnx1-ax12-bx1=0f(x2)=lnx2-ax22-bx2=0,即{lnx1=ax12+bx1lnx2=ax22+bx2,两式相减,得:lnx1x2=a(

函数f(x)=-(x-1)^2(x=1)满足对任意x1不等于x2,都有(f(x1)-f(x2))/x1-x2>0,求a取

条件即为当x1>x2时,f(x1)>f(x2)此为增函数,当x=1,需有f(1)=3+3a>=0-->a>=-1(3-a)x+4a为增函数需有:3-a>0-->a

已知函数f(x)=2x1−x

∵f(x)=2x1−x,∴f(ax)=2ax1−x,设x1<x2,则f(x1)-f(x2)=2ax11−x1-2ax21−x2=2a(x1−x2)(1−x1)(1−x2)∵x1-x2<0,a<0,∴2

为了使函数f(x)=X^2,[x1]

为使函数连续,则分段函数左极限等于右极限左极限为limf(1-)=1,右极限为limf(1+)=a+blimf(1-)的意思是自变量从1的左边趋近于1时的函数极限,即左极限,同理limf(1+)所以第

设函数f(x)=|x-a|,若对于任意x1,x2∈[3,+∞),x1≠x2,不等式(f(x1)-f(x2))/(x1-x

不等式恒成立的意思就是函数在定义域上单调递增函数x>a的时候单调递增所以a

已知函数f(x)=x|x-a|,若对任意的x1,x2∈[2,+∞),且x1≠x2,(x1-x2)[f(x1)-f(x2)

f(x)=x|x-a|的图象如图,其在,[a,+∞)上是一个增函数,∵对任意的x1,x2∈[2,+∞),且x1≠x2,(x1-x2)[f(x1)-f(x2)]>0∴f(x)在[2,+∞)上是增函数,故

已知函数f(x)=1-2x,x1

inputx,yifx1,theny=1+2xprinty

f(x1+x2)=f(x1)f(x2),f’(0)=2,求f(x)和f’(x)

由f(x1+x2)=f(x1)f(x2),得该函数类型为f(x)=b*a∧x(指数型函数)f(x)'=b(a∧x)㏑a所以f'(0)=blna=2所以a=e∧n,b=2/n所以f(x)=(2/n)e∧

f(x)=x/a(x+2)且f(x)=x有唯一解,f(x1)=1/1003,xn+1=f(xn).

记住错项相消法Cn=1.5(2n-1)-1.5(2n-1)3^(-n)前面的求和是1.5n^2(2n-1)3^(-n)的和设为SnSn=1/3+3*1/3^2+……+(2n-1)/3^nSn/3=1/

f(x)=x^2+a*ln(1+x)有两个极值点x1 x2,且x1<x2

1.f’(x)=2x+a/(1+x)=0,2x^2+2x+a=0有不等的实根,4-8a>0,a

F(x)=2/3x*x x1

f(x)在x=1处左右导数存在再问:左右都存在?

函数f(x),x∈R,若对于任意实数x1,x2都有f(x1+x2)+f(x1-x2)=2f(x1).f(x2),求证f(

取-X和X作x1,x2得f(X-X)+F(X+X)=2F(X).F(-X)-->F(0)+F(2X)=2F(X).F(-X)(1)再把x1,x2调换一下得F(-2X)+F(-X+X)=2F(X).F(

若函数f(x)=1/3x^3-a^2x满足对于任意的x1,x2属于[0,1]都有|f(x1)-f(x2)|

f(x1)-f(x2)=(1/3)[(x1-x2)(x1^2+x1·x2+x2^2)]-(a^2)(x1-x2)=(1/3)(x1-x2)(x1^2+x1·x2+x2^2-3a^2)|f(x1)-f(

f(x)=ax^2+bx+1(a>0,b属于R),f(x)=x,有两根x1,x2,若x1

(1)f(x)=x,即g(x)=ax^2+(b-1)x+1=0(ab属于Ra>0)若两根为c和d且c6a+3b-3/2即2a-b>0,b0,则b/2a-1得证(2)ax^2+(b-1)x+1=0两根为

已知函数f(x)=x^2+2/x+alnx(x>0,a为常数),对任意两个不相等的正数x1,x2,证明:当af[(x1+

我给你简单分析一下:[f(x1)+f(x2)]/2>f[(x1+x2)/2]从图像上看就是(x1,f(x1))与(x2,f(x2))的中点高于f函数图像x1,x2的中点.画出图来函数f显然是一个导数的

f(x)=x²-alnx-bx+2,若函数f(x)有两个不同的零点x1,x2,求证a*f’{(x1 +x2)/

再问:题目f(x1)=0,为什么f‘(x1)=0再答:不完美,但计算实在太复杂,只能如此了。题目肯定没有错,盼有高手出更好解答。