f(x)在x=a处可导,且limf(x) x-a=2求f(a),f(a)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 22:00:28
f(x)在x=a处可导,且limf(x) x-a=2求f(a),f(a)
设f(x)在[a,b]上有二阶导数,且f''(x)>0,证明:函数F(x)=[f(x)-f(a)]/(x-a) 在(a,

F'={f'(x)(x-a)-[f(x)-f(a)]}/(x-a)^2原命题等价于证f'(x)(x-a)-[f(x)-f(a)]>=0G=f'(x)(x-a)-[f(x)-f(a)],a0a再问:帅哟

设f(x)在x=0处连续,且lim(x趋于0)f(x)/x存在,证明,f(x)在x=0处可导

lim(x→0)f(x)/x存在说明x→0,limf(x)=f(0)=0所以limf(x)/x=lim[f(x)-f(0)]/x=f'(0)所以在x=0处可导

设函数f(x)在x=a处可导,且lim[f(a+5h)]-f(a-5h)]/2h=1,则f'(a)=

那个极限式可以化为5/2(f'(a)+f'(a))=1,也即5f'(a)=1,f'(a)=1/5;

设函数f(x)在点x=0处可导,且f(x)=f(0)+2x+a(x),lim a(x)/x =0(x→ 0),则f‘(0

因为lima(x)/x=0(x→0)且函数f(x)在点x=0处可导又因为f(0)=f(0)+a(0),a(0)=0,所以a'(0)=lim[a(x)-a(0)]/(x-0),(x→0)=lima(x)

设f(x)在[a,b]二阶可导,且f''(x)

这也就是所谓的Hadamard不等式得一边,

已知函数f(x)在x=a处可导,且f

乖,应该是求limx→a吧?若是求limx→a,则原式={f(x+x-a)-f(x)+f(x)-f(2a-x)}/x-a={f(x+x-a)-f(x)}/x-a++{f(x)-f(2a-x)}/x-a

设f(x)在[a,b]上二阶可导,且f''(x)>0,证明:函数F(x)=(f(x)-f(a))/(x-a)在(a,b]

我的证明方法不太好,不过凑合能证出来.由中值定理,F(x)=(f(x)-f(a))/(x-a)=f‘(c)c∈【a,x】对任意x1>x,有(f(x1)-f(x))/(x1-x)=f'(c1)c1∈【x

设f(x)在(a,b)内连续,且limx->a+f(x)=+无穷,limx->b-f(x)=-无穷,证明f(x)在(a,

因imx->a+f(x)=+无穷,故存在点c>a,使f(c)>0.又limx->b-f(x)=-无穷,故存在d(c

设f‘(x)在[a,b]上连续,且f(a)=0,证明:|∫b a f(x)dx|

设g(x)=∫f(t)dt,则g'(x)=f(x),g"(x)=f'(x).g(x)在[a,b]二阶连续可导,且g(a)=0,g'(a)=f(a)=0.由带Lagrange余项的Taylor展开,存在

f(x)在[a,b]上连续,在(a,b) 内可导,且 f '(x)≤0,F(x)=1/(x-a)∫(x-a)f(t)dt

这个就是变上限积分的求导公式:[∫[a→x]f(t)dt]'=f(x)[∫[a→g(x)]f(t)dt]'=f(g(x))g'(x)∫[a→x]f(t)dt/(x-a)求导,就是用了个除法求导公式.【

已知定义在R上的函数f(x),g(x)满足f(x)/g(x)=a^x,且f'(x)g(x)

这是我们半期考试的最后一个选择题,有印象!等等!我知道了,对fx/gx求导后分子为fx'*gx_fx*gx'分母为gx'的平方,根据fx'gx

f(x)在[0,+∞)上有二阶连续导数,且f''(x)≥a>0,f(0)=0,f'(0)

f''(x)>=a>0,f'(x)在[0,+∞)上严格单调递增.f'(x)在[0,+∞)上至多只有一个零点.记lim{x->+∞}f'(x)=d(1)d>0时,由f'(0)+∞}f(x)=c>0,则由

若函数f(x)在x=0处连续,且lim{x趋近0}f(x)/x存在,试证f(x)在x=0处可导

证明:∵limf(x)/x存在,且x→0(当x→0)∴f(x)→0(当x→0)又∵f(x)在x=0处连续∴f(0)=0limf(x)/x=lim[f(x)-f(0)]/(x-0)=f'(0)∴f(x)

设f(1+x)=af(x)恒成立,且f'(0)=b(a,b为非零常数),证明f(x)在x=1处可导

f'(1+x)=af'(x),f'(1)=af'(0)=ab,所以f(x)在x=1处可导

假设函数f(x)在[a,+∞)上连续,f''(x)在(a,+∞)内存在且大于零,记作:F(x)=[f(x)-f(a)]/

当x>a时,F'(x)=[f'(x)(x-a)-(f(x)-f(a)]/(x-a)^2=[f'(x)-f'(b)]/(x-a)(f(x)-f(a))=f'(b)(x-a)>0(f''(x)>0,f'(

f(x)在x=0处连续,且x→0时,lim (f(2x)-f(x))/x = A(常数).求证 f(x)在x=0处可导,

先声明一下,这道题我也没做出来,得到了楼主的大量帮助,顺便鄙视一下1楼的,还强词夺理,甚至进行人身攻击,当真是极品了,如果你真是一个老师的话,那只能说,中国的教育快要完蛋了.证明:lim(f(2x)-