f(x)在[a,正无穷)上连续f(a)>0且limf(x)=A
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 14:08:45
任意取x1>a,因为x----正无穷时,f(x)----0,故对于正数f(x1),存在正数N,使x>N时,|f(x)-0|f(x)又在闭区间[a,N]上,应用最大最小值定理:在区间[a,N]至少有一点
已知定义在区间A上的函数f(x),如果对于任意给定的正数ε>0,存在一个实数ζ>0使得对任意A上的x1,x2且x1,x2满足|x1-x2|
设lim{x->∞}f(x)=A由极限保号性可知存在X>0,当|x|>X时,|f(x)|
证明:x趋于正无穷时,f(x)存在,故存在b,b>a.当x》b时,|f(x)|《M1又y=f(x)在[a,正无穷]上连续,当然在[a,b]上连续,故当x在区间[a,b]时,|f(x)|《M2所以:|f
首先由连续可知,a+e的bx次方等于零是无解的(否则分母等于0就是间断点了),若a=0,此外,b=0肯定是不行的,这个很好验证,当b再问:恩呢,正解~我再仔细研究一下再答:那么我还要提醒一下,在x--
参考答案\x09生活不是一场赛跑,生活是一场旅行,要懂得好好欣赏每一段的风景.不要只因一次失败,就放弃你原来决心想达到的目的.
证明因 lim(x→a+)f(x),lim(x→+∞)f(x)均存在,据极限的局部有界性定理,可知存在η>0,X>0,使得f(x)在(a,a+η)和(X,+∞)有界,即有M1>0,使 |f
当x不等于零时g(x)=f(x)/x,显然f(x)具有二阶连续导数,1/x也是可导的,故g′(x)=[xf′(x)-f(x)]/x^2,当x不等于0时,由于f(x)具有二阶连续导数,故f′(x)也是连
解析:已知函数f(x)在(负无穷,-1】U【1,正无穷)上是奇函数,则对于定义域内的任意实数x,都有:f(-x)=-f(x)即a-1/(2的-x次方-1)=-[a-1/(2的x次方-1)]a-2的x次
你举的例子f(x)只有上界,没有下界,所以不是有界.必须f(x)的绝对值小于M才是有界的,只有一边小于某个M时,只能说有上界或有下界.
这个用区间套的思想就可以了因为f(x)在[0,正无穷)上有界所以存在实数M,N,使得M=a_2时,f(x)一定落在一个宽度为d/2^2的开区间内以此下去,我们可以证明出f(x)的极限存在
2a^2+a+1>3a^2-4a+1a^2-5a
无穷/无穷型的洛必达法则limf(x)=lime^xf(x)/e^x洛必达法则得=lime^x(f(x)+f'(x)/e^x=limf(x)+f'(x)=0,于是limf'(x)=limf(x)+f'
lim(x->∞)f(x)=A即对任意的ε>0(那么不妨取ε=1),存在X>0,使|x|>X时有|f(x)-A|
192^(1/3)再问:......过程,谢谢......而且答案貌似是36^(1/3)再答:对于积分,t^2dt积分后为(t^3)/3,上限为f(x),下线为0.代入积分表达式得(f(x))^3除以
大致这样,有问题追问
取ε=f(a)-c>0,存在G>a+1使得当x>G时|f(x)-c|
取ξ=(a-1)/2|lnf(x)/lnx+a|
答案是:00;分别可以求得:(1)0
我不清楚你所指的无穷区间是什么,姑且认为就是(-∞,+∞).那么我们用-x代入那作为条件的不等式:|f(-x)-f'(-x)||f(-x)+{f(-x)}'||f(x)+f'(x)|再问:为何有中诡辩