f(x,),求矩阵估计量,求极大似然估计

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 19:59:57
f(x,),求矩阵估计量,求极大似然估计
设总体X的概率密度为f(x),X1,X2……Xn是来自X的样本,求θ的矩估计量和最大似然估计量

L=f(x1)f(x2)...f(xn)=θ^n(1-x1)^(θ-1).(1-xn)^(θ-1)..lnL=nlnθ+(θ-1)[ln(1-x1)(1-x20...(1-xn)]dln/dθ=n/θ

设总体X的密度函数f(),试求参数的矩法估计.

/>矩法估计思路大概就是先找出参数与期望之间的关系,然后用样本矩(样本平均数)代替期望,对参数进行估计.具体步骤如下:所以参数的估计值是样本平均数的三倍.如果还有问题再问我吧.

线性代数,已知矩阵的秩,求矩阵中未知量

再问:我想问下r=3为什么3a方+3a等于2a+2额再问:了解了,谢

矩阵多项式题A=1 -1 f(x)=x²-3x+3 求矩阵多项式f(A) 2 3麻烦告诉我如何计算

f(A)=A^2-3A+3EA^=-1-487-3A=-33-6-93E=3003所以f(A)=A^2-3A+3E=-1-121

题干如下:设总体X的概率密度为f(x;μ,θ)=(1/θ)*e^(-(x-μ)/θ),试求μ,θ的矩估计量

答案不是挺清楚的么,E(X^2)就是E(x)的被积函数乘1个x,再积分就行了再问:是具体的积分过程不清楚,望告知。再答:这个写起来真的太长了。。。你可以设t=(x-μ)/θ,替换以后积分会稍微轻松一点

matlab中,想对矩阵X中的每一个元素x(i,j)求f(x(i,j)),生成新矩阵Y,应该怎么办?

每次取X(i,j)再计算f(x),这个好像没捷径了吧,如果想减少计算数据量,可以对矩阵X处理,采用稀疏矩阵存储,a=sparse(x);[m,n]=size(a);fx=zeros(m,n);fori

英语翻译求估计

勉勉强强

设总体X的概率密度为,求极大似然估计量

套用公式计算,经济数学团队帮你解答.请及时评价.再问:这一步是怎么的,看不懂  谢谢了再答:

求方差和期望的各类估计量

矩估计E(x)=(x1+x2+...+xn)/n=BD(x)=E(x^2)-[E(x)]^2=A则矩估计为:=(x1+x2+...+xn)/n=(x1^2+x2^2+...+xn^2)/n-(x1+x

已经矩阵A,B,AX=B,求矩阵X

初等行变化啊,(A,E)化成(E,B),B就是A的逆

求Ө的极大似然估计,设总体X的概率密度为f(x

设总体X的概率密度为f(x)=Өx^(Ө-1),0

总体X~B(n,p),X1,X2,…,Xn为其样本,求n及p的矩估计量

用样本算出均值与方差,另一方面,其均值与方差分别为np,np(1-p),即可算出

设总体x服从二项分布B(N,P),其中N已知,试求参数p的矩估计量和极大似然估计量

E[X]=NP;Var[X]=NP(1-P);矩估计:总体的一阶原点矩为E[X]=NP;样本的一阶原点矩为_X,用样本估计总体,有^p=_X/N;极大似然估计:^p=_X/N;