f(z)=2z 1 z^2 z-2的以z=0为中心的圆环环域内的洛朗级数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 09:13:07
设z=x+yi(x,y为实数)1=|z+1|^2-|z-i|^2=|(x+1)+yi|^2-|x+(y-1)i|^2=(x+1)^2+y^2-[x^2+(y-1)^2]=x^2+2x+1+y^2-(x
因为f(z)=2z+z'-3i,把z'+i代入有:f(z'+i)=2(z'+i)+z'-3i=3z'-i又因为:f(z'+i)=6-3i.令z'=x+yi.x,y是实数,代入上式有:3x+(3y-1)
e^(-xy)-2z+e^z=0-ye^(-xy)-2z'(x)+e^zz'(x)=0z'(x)=ye^(-xy)/(e^z-2)-xe^(-xy)-2z'(y)+e^zz'(y)=0z'(y)=xe
LZ,这题怎么搞的,主要思路倒还是不难判断的,但就是很繁琐,用了很多夸张的东西,实在做得我好苦啊!答案是根号2么?我尝试过多种方法,想过直接以三角形是通分化简,实在太繁琐;想过复数模的不等式,也做不下
虚数z满足|z|=1,z²+2z+1/z
首先f(z)的孤立奇点只有z=2,z=-3,z=-10这三个,而f(z)在同一个圆环域内部展开成洛朗级数是唯一的,所以本题要找的其实就是分别以这三个孤立奇点为圆心的最大解析圆环域有多少个,对于z=2,
画图最简单,z到0和到2+2i的距离相等,那么其实z就是在y=2-x的直线上,离原点最近的点是(1,1),也就是|z|最小值是根号2,sqrt(2)
首先设1-z等于t.则1-t等于z.所以f(t)等于2(1-t)-i.f(z)等于2(1-z)-i.这只是转化一下原函数.然后把1-i代入f(z),f(1-i)等于2-2(1-i)-i.即等于i.然后
f(z)=z/(z+1)*e^[2/(z+1)]设I=∫(|z|=π)f(z)dz因为在区域|z|
设Z=x+yi,Z的共轭为x-yi,得到方程:x+根号(x^2+y^2)=2,y=1解得,x=3/4,y=1因此,Z=3/4+i
好多符号没法编辑,我用Word编辑,截图给你看吧?大致过程如下:http://hi.baidu.com/%D2%DD%B7%E7%CE%C4%C5%B5/album/回答问题的截图第三题太变态了,z的
3+i再答:3+i再问:过程再答:设z=a+bi,则z-=a-bi.而f(z-+i)=z+2i⇒f(a-bi+i)=a+bi+2i,即f[a+(1-b)i]=a+(b+2)i.由题意可得,
首先找出f(z)的奇点,为z=±1且都是一介极点那么无穷远点的留数就等于这两点的留数和的相反数,z=-1点的留数,根据定理得到{(e^z)/(z-1)|[z=-1]}=(-1/2)e^(-1)z=1点
f(z+i)=z+2z-2i,则f(i)=?f(z+i)=z+2z-2i,令z=0,有:f(i)=-2i
设z=x+yi(x,y∈R),由|z|2+(z+.z)i=3−i2+i,得x2+y2+2xi=(3−i)(2−1)(2+i)(2−i)=1−i,∴x2+y2=12x=−1,解得x=−12y=±32.∴
令z=a+bi,(a,b∈R),则f(z)=2(a+bi)+(a-bi)-3i=3a+(b-3)if(z的共轭+i)=f[a+(1-b)i]=3a+(-b-2)i=6-3i∴3a=6,-b-2=-3解
f(Z+i的共轭复数)=2Z+(Z的共轭复数)+i既然求f(i),那么令(Z+i)的共轭复数=i,即Z+i=-i,Z=-2i故f(i)=2(-2i)+(-2i的共轭)+i=-3i+2i=-i选择D
f(z)=1-2/(z+2)=1-2/[(z-2)+5]=1-0.4*1/[1+(z-2)/5]=1-0.4*Σ【-(z-2)/5】^n(0到+∞)
f(z)=1-2/(z+2)=1-1/[1+(z/2)]=1-1/[1-(-z/2)],根据1/(1-z)=1+z+z^2+...,所以f(z)=z/2-z^2/2^2+z^3/2^3-...+(-1
1/z=1/(1-(1-z))=1+(1-z)+(1-z)^2+.f(z)=1/3*(1+(1-z)+(1-z)^2+.)+2