f0到πx*f(sinx)dx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 17:56:16
f0到πx*f(sinx)dx
计算定积分I=∫(0→π)f(sinx)/[f(sinx)+f(cosx)]*dx,其中f(x)为连续函数,且f(sin

令u=π/2-x则x=π/2-u原积分=∫(π/2→0)f(sin(π/2-u))/[f(sin(π/2-u))+f(cos(π/2-u))]d(π/2-u)=-∫(π/2→0)f(cosu)/[f(

求定积分x区间为π到0 ∫(x(sinx)^6)dx

记A=∫(0到π)x(sinx)^6dx,换元x=π-t,则A=∫(0到π)π(sint)^6dt-∫(0到π)t(sint)^6dt,所以A=π/2×∫(0到π)(sinx)^6dx.(sinx)^

定积分证明题 ——请证明:【积分区间为0到π】∫xf(sinx)dx=(π/2)∫f(sinx)dx

移到一边,积分限内:(x-π/2)f(sinx)令x-π/2=ppf(Cosp),P积分限为-π/2至π/2,p为奇函数,f(Cosp)为偶函数,pf(Cosp)为奇函数,对称区间中积分为0.再问:你

3.设 f(x)是连续函数,且f(x)=sinx+o到x f(x)dx< 定积分> 则 f(x)=?

f'(x)=cosx+f(x)f(0)=0解如上微分方程得:f(x)=(sinx+cosx)/2-(1/2)e^x

计算反常积分f0到正无穷x/(1+x)^3 dx

我算算再问:好的,谢了再答:做出来了,给你传个图再问:好的,,呵呵再答:再问:线性微分方程y^(4)-y=0通解为再问:这个呢再答:y^4-y=0的通解?再问:对啊再问:帮帮忙再答:你题没写错吧?再问

证明:定积分∫(0到π)f(sinx)dx=2∫(0到π/2)f(sinx)dx,

算嘛再答:再问:额,这样额再问:再问:那如果是这样的也是算?再答:你那是大几的题目啊再问:大一额再答:问你们数学老师去

定积分0到π/2 f(sinx)dx= 定积分0到π/2 f(cosx)dx 证明这个

证明:由题意可得∫f(sinx)dx求导可得f(sinx)∫f(cosx)dx求导可得f(cosx)因为f(x)一定,当x在(0,π/2)时f(sinx)在f(0~1)之间取值同理f(cosx)也在f

F(x)==∫sinx(e^sinx)dx (上限x+2π 下限x)的值?

被积函数以2π为周期,所以F(x)=∫(x→x+2π)sinx(e^sinx)dx=∫(0→2π)sinx(e^sinx)dx=∫(-π→π)sinx(e^sinx)dx=∫(-π→0)sinx(e^

f为连续函数 证明f(cosx)dx=f(sinx)dx 左右边的范围都是0到π /2

I=∫[0,π/2]f(cosx)dx换元,令u=π/2-x,dx=(﹣1)du=∫[π/2,0]f(sinu)(-1)du=∫[0,π/2]f(sinu)du=∫[0,π/2]f(sinx)dx

求不定积分f(cos(2x)*sinx)dx

(1)∫1/[x(x-1)]dx=∫[1/(x-1)-1/x]dx=ln|x-1|-ln|x|+C=ln|(x-1)/x|+C(2)∫cos2x/(sinx+cosx)dx=∫(cosx-sin

证明∫(0,π)f(sinx)dx=2∫(0,π/2)f(sinx)dx

左边=-cosπ+cos0=2右边=2(-cosπ/2+cos0)=2原式成立再问:是f(sinx),不是sinx再答:抱歉,没仔细看题呵。令x=(π/2)-t则∫(0,π/2)f(sinx)dx=∫

∫f(x)dx=F(x)+C 求 ∫cosx f(sinx) dx

记sinx=t∫cosxf(sinx)dx=∫f(sinx)dsinx=∫f(t)dt=F(t)+C=F(sinx)+C

设f(x)连续,证明(积分区间为0到π)∫xf(sinx)dx=(π/2)∫f(sinx)dx

证明:令x=π-t,则x由0到π,t由π到0,dx=-dt原式记为I则I=-(积分区间π到0)∫(π-t)f(sin(π-t)dt=-(积分区间π到0)∫(π-t)f(sin(t)dt=(积分区间0到

证明:若函数f(x)在[0,1]上连续,则∫xf(sinx)dx=π/2∫f(sinx)dx (上限 π,下限 0)

令u=π-x,du=-dx,u:π--->0,则∫[0--->π]xf(sinx)dx=-∫[π--->0](π-u)f(sin(π-u))du=∫[0--->π](π-u)f(sinu)du=π∫[

怎么证明∫(0到pi)f(sinx)dx=2*∫(0到pi/2)f(sinx)dx

证明:因为∫(0→π)f(sinx)dx=∫(0→π/2)f(sinx)dx+∫(π/2→π)f(sinx)dx令x=π-t则当x=π/2时t=π/2当x=π时t=0所以∫(π/2→π)f(sinx)

定积分½π到π(sinx+1/x)dx

∫(π/2→π)(sinx+1/x)dx=[-cosx+ln|x|]|(π/2→π)=[-cosπ+ln(π)]-[-cos(π/2)+ln(π/2)]=1+ln(π)-0-[ln(π)-ln(2)]

设f(x)=sinx,x∈[0,π/2) f(x)= 1,x∈[π/2,2].则f(x)dx在0到2上的积分为

∫上2下0;f(x)dx=∫上2下π/2;f(x)dx+∫上π/2下0;f(x)dx=∫上2下π/2;1dx+∫上π/2下0;sinxdx=x│上2下π/2-cosx│上π/2下0=(2-π/2)-(

设f(x)∈C[0,1],证明∫(π,0)*x*f(sinx)dx =π/2*∫(π,0)*f(sinx)dx

设x=π-y,dx=-dy当x=0,y=π当x=π,y=0∫(0→π)xf(sinx)dx=-∫(π→0)(π-y)f(sin(π-y))dy=π∫(0→π)f(siny)dy-∫(0→π)yf(si