F1F2为双曲线的左右焦点,以F1F2为直径的圆与双曲线右支的一个交点为P
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 11:19:31
设PF1与圆相切于点M,过F2做F2H垂直于PF1于H,则H为PF1的中点,∵|PF2|=|F1F2|,∴△PF1F2为等腰三角形,∴|F1M| =14| PF1|,∵直角三角形F
1)e=c/a=3b^2/a^2=8代入双曲线中8x^2-y^2=8a^2线y=2与C的两个焦点间距离为√6y=2代入双曲线中8x^2-y^2=8a^2x=±√(a^2+1/2)两个焦点间距离=2√(
△PF1F2是以PF1为底边的等腰三角形,∴PF2=F1F2=2c,P在双曲线的右支上,∴PF1-PF2=2a,PF1=2a+2c.cosPF1F2=PF1/(2F1F2)=(a+c)/(2c),PF
a²=9,b²=16所以c²=9+16=25c=5则F1F2=2c=10令PF1=p,PF2=q由双曲线定义|p-q|=2a=6平方p²-2pq+q²
画一个图形,设PF1与圆相切于点M因为|PF2|=|F1F2|所以三角形PF1F2为等腰三角形|F1M|=(1/4)|PF1|又因为在直角三角形F1MO中|F1M|^2=|F1O|^2-a^2=c^2
设|PF1|=m,|PF2|=n,设P在第一象限,m-n=2a,m2+n2=(2c)2,n+2c=2m∴5a2-6ac+c2=0,e2-6e+5=0,e=5或e=1(舍去),∴e=5
已知双曲线方程为:x²/a²-y²/b²=1∴设P点坐标为:(asecθ,btanθ)∵P点在右支上,所以:-π/2<θ<π/2∵PF1-PF2=2a=7PF2
PF1F2是直角三角形e=c/a=5c=5a而由双曲线的定义可知:PF1-PF2=2a(1)F1F2=2c=10a(2)又在直角三角形中,PF1^2+PF2^2=F1F2^2(3)由上面三式,解得PF
设椭圆的半长轴长,半焦距分别为M(xM,yM),双曲线的半实轴长,半焦距分别为a2,c,|PF1|=m,|PF2|=n,则{m+n=2a1m-n=2a2m=10n=2c⇒{a1=5+ca2
a=3,b=4,c=sqrt(a^2+b^2)=5.则F1(-5,0),F2(5,0).设P(s,t),s>=3:s^2/9-t^2/16=1.|PF1|=|F1F2|:sqrt[(s+5)^2+t^
a²=25,a=5PF1=3因为P在左支上所以|PF2|-|PF1|=2a|PF2|=10+3=13根据余弦定理cos∠F1PF2=(PF1²+PF2²-F1F2
∵双曲线C:x29−y216=1中a=3,b=4,c=5,∴F1(-5,0),F2(5,0)∵|PF2|=|F1F2|,∴|PF1|=2a+|PF2|=6+10=16作PF1边上的高AF2,则AF1=
a=8,b=6,c^2=64+36=100,c=10|AF2|-|AF1|=2a=16|BF2|-|BF1|=2a=16|AF2|+|BF2|-(|AF1|+|BF1|)=4a=32|AF1|+|BF
可以算出c=2,因为|PF1|-|PF2|=2a,所以|PF1|=|2PF2|=4根号2,|F1F2|=4,三条边已经知道根据余弦定理可以得到3/4.
OP=5/PF1,F1F2,PF2成等差数列,所以PF1+PF2=2F1F2=4c(1)又P在双曲线上,所以|PF1-PF2|=2a=4(2)(1)^2+(2)^2:PF1^2+PF2^2=2(a^2
由a^2+b^2=c^2得,c=5所以|PF2|=|F1F2|=5*2=10,再由双曲线定义得:|PF1|-|PF2|=2a=6,所以|PF1|=16,所以三角形PF1F2是等腰三角
∵F1O→=PM→,OP→=λ(OF1→|OF→1|+OM→|OM→|),∴四边形F1OMP是菱形,设PM与y轴交于点N,∵|F1O|=|PM|=c,MN=a2c,∴P点的横坐标为-(c-a2c)=-
c/a=根号2∴c²=2a²,即:a²+b²=2a²∴a=b设双曲线方程是:x²/a²-y²/a²=1,代人点