池塘边有A,B两棵树

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 22:20:03
池塘边有A,B两棵树
如图,在一棵树CD的10m高处的B点有两只猴子,它们都要到A处池塘边喝水,其中一只猴子沿树爬下走到离树20m处的池塘A处

设BD高为x,则从B点爬到D点再直线沿DA到A点,走的总路程为x+AD,其中AD=根号下[(x+10)^2+20]而从C点到A点经过路程(20+10)m=30m,根据路程相同列出方程x+AD=30,解

如图,有一个池塘,要想测得池塘两端A、B的距离,你有什么好办法?

过A做一条直线l然后过B作l的垂线,和l相交于C量出AC和BC则由勾股定理AB=√(AC²+BC²)

在一池塘边有A,B两棵树,如图,试设计两种方案,测A,B两棵树之间的距离.

1.任取一点,组成一个三角形.测出两边长和一个夹角的角度,通过三角函数计算两棵树的距离.2.由A点与B点引出两条定长的直线,使得两条直线的中点相交,直接测量定长直线的两端点的距离,既得利A、B两棵树的

如图所示,有一池塘,要测量池塘两端A、B的距离,请用构造全等三角形的方法,设计一个测量方案(画出图形),并说明测量步骤和

在平地任找一点O,连OA、OB,延长AO至C使CO=AO,延BO至D,使DO=BO,则CD=AB,依据是△AOB≌△COD(SAS).

池塘旁的两点A,B处有两棵树,池塘很宽,水很深,请想办法测量出两棵树之间的距离.

1、用测量仪测出一棵树脚下与另一棵树离地固定高度点(比如再从米处、三米处)的夹角,再正弦函数即可求出来.2、通过两处的声波与光波的时间差计算出.3、通过回声波可以测出.

在一池塘边有A,B两棵树,试设计两种方案,测量A,B两棵树之间的距离

1.任取一点,组成一个三角形.测出两边长和一个夹角的角度,通过三角函数计算两棵树的距离.2.由A点与B点引出两条定长的直线,使得两条直线的中点相交,直接测量定长直线的两端点的距离,既得利A、B两棵树的

如图,在一棵树的10m高处的B点有两只猴子,它们都要到A处池塘边喝水

分析:已知BD=10米,AB=20米,设CD=x,因为两只猴子所经过的距离相等,即AB+BD=CD+AC,可以求得AC,在直角△ABC中,AC为斜边,运用勾股定理即可求得x,即CD的长,即可求得BD+

如图,池塘边有两点A,B,点C是BA方向或直角的AC方向上一点,测得CB=60m,AC=20m.你能求出A,B两点间的距

哥们.我也是学生.正好学到这里.你这是寒假作业吧我算答案是64cm分析给你写上勾股定理C²=A²+B²60x60+20x20=4000根号下4000≈64

池塘边有两点A,B,点C是BA方向或直角的AC方向上一点,测得CB=60m,AC=20m.你能求出A,B两点间的距离吗?

由于没图,只能认为△CAB为直角三角形,切∠CAB为直角所以AB²=BC²-AC²=60²-20²=3200所以AB=40X根号2

如图,A,B两点分别位于一池塘的两侧,池塘右边有一水房D,在DB的中点C处又有一棵千年古樟,小华从点A出发

1)根据题意只要证明△ABC≌△EDC即可证明DE=AB;(2)确定AB的长度就是确定DE的长度,由题意可列出关系式AE-AD<DE<AD+AE,然后代入数据即可求出;(3)先由题意画出图形,然后做A

如图 a b两点分别位于一个池塘的两侧,池塘左边有一水房D,在DB中点C处有一棵百年古

有点不一样,知识改变一下数字吧~附加题(一中学生必做,其他学校选做)如图,A、B两点分别位于一个池塘的两侧,池塘西边有一座假山D,在DB的中点C处有一个雕塑,张倩从点A出发,沿直线AC一直向前经过点C

池塘里有3张荷叶A.B.C,一只青蛙在这3张荷叶上跳来跳去.若青蛙从A开始、

Ak=2*Ak-1+2(k为偶数)Ak=2*Ak-1-2(k为奇数)由公式可知:A2=2A3=2A4=6A5=10A6=22A7=42A8=86//====还有另一种形式:Ak=2的(k-1)次方-A

如图有一个池塘,池塘两侧有两个点A,B.现打算测A,B两点之间距离,李华同学设计了下面的测量方案:如图,连接AB,过

∵BC⊥ABBC=BC∠BCD=∠BCA∴Rt△ABC≌Rt△DBC∴BD=AB即,两个直角三角形是以直线BC为轴的轴对称图形,所以,线段BD的长为池塘两侧A,B两点的距离.

如图,有一池塘.要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA.

证明:在△ACB与△DCE中,∵CD=CA∠ACB=∠DCECE=CB∴△ACB≌△DCE(SAS),∴AB=DE,即DE的长就是A、B的距离.

如图,有一池塘,要测池塘两端A,B的距离,可先在平地上 取一个可以直接到达A和B的点C,连接AC并

在△ABC和△EDC中,DC=AC,(已知),EC=BC,(已知)∠ABC=∠DCE(对顶角相等)所以:△ABC≌△EDC(两边夹一角相等)所以,ED=AB,(全等三角形,对应边相等)

(2002•湛江)如图,有一池塘.要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C,连接AC并延长到

证明:在△ACB与△DCE中,∵CD=CA∠ACB=∠DCECE=CB∴△ACB≌△DCE(SAS),∴AB=DE,即DE的长就是A、B的距离.