F=f摩 n
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 14:04:09
是循环的因为sin(x+N兀)=sinx,所以,其实这里只有三个值循环出现:f(1)f(3)f(5)=-1/4总共有51个函数,即17组门所以答案是:-1/(4^17)
1)首先证明(4^n+1)(4^(n+1)-1)>4^n(4^(n+1)+1)证明:左-右=[4^(2n+1)+3*4^n-1]-[4^(2n+1)+4^n]=2*4^n-1>02)f(n)=(4^n
由f(n)=2f(n-1)+1得f(n)+1=2f(n-1)+2=2(f(n-1)+1),即f(n)+1=2(f(n-1)+1),同理f(n-1)+1=2(f(n-2)+1)f(n-2)+1=2(f(
f(n)=sin(n兀/6)所以f(1)+f(2)+.+f(12)=1/2+√3/2+1+√3/2+1/2+0-1/2-√3/2-1-√3/2-1/2-0=02008÷12=167.4所以f(1)+f
解析:∵sin(π/6)sin(3π/6)sin(5π/6)sin(7π/6)sin(9π/6)sin(11π/6)=sin(π/6)sin(π/2)sin(π/6)sin(-π/6)sin(3π/2
f(1)+f(2)+...+f(n-1)=g(n)f(n)-g(n)-----g(n)=【f(1)+f(2)+...+f(n-1)】/【f(n)-1】-----g(n)=[1+(1+1/2)+(1+1
猜想:g(n)=n即f(1)+f(2)+...f(n-1)=n[f(n)-1]n=2时,左边=f(1)=1,右边=2*[f(2)-1]=1,左边=右边假设n=k时,f(1)+f(2)+……+f(k-1
令g(n)=f(n)/(n-1)!,h(n)=g(n)/n=f(n)/n!那么g(n)=g(n-2)+h(n-3)+h(n-4)对n求和可得g(n)=1+h(1)+h(2)+...+h(n-3)因此g
#includeintmain(){floatF(intm,intn);intn,m;floaty;printf("请输入两个数据:\n");scanf("%d%d",&m,&n);y=F(m,n);
f(n)-f(n-1)=1+f(n-1)f(n)=1+2f(n-1)f1=1f2=2+f1=3f3=3+f1+f2=7f4=4+f1+f2+f3=15规律:fn=2^n-1设n=1~k时,满足fn=2
求采纳~~~f(x)=x+1f(f(x))=x+2,就是把x+1作为整体代入f(x)=x+1里的xf(f(f(x)))=x+3类比推下去即可N个就x+N再问:(+_+)?不好意思哈,不明白这里..f(
F(N)=1*2/3*3/4*4/5*...N/(n+1)=2/(N+1)
f(1-x)=2^(1-x)/(2^(1-x)+√2)=2/(2+√2*2^x)=√2/(2^x+√2)=>f(x)+f(1-x)=√2/(2^x+√2)+2^x/(2^x+√2)=12(f(1/n)
∵f(n+1)=f(n)-14(n∈N*)∴f(n+1)-f(n)=-14f(2)=2,∴f(n)表示以2为首项,以14为公差的等差数列,f(101)=2-(101-2)×14=-914故答案为:-9
f(0)=√2-1,f(1)=(2-√2)/2,f(2)=(4-√2)/14,f(-1)=(4√2-2)/7f(0)+f(1)=√2/2f(-1)+f(2)=√2/2猜想f(-n)+f(n+1)=√/
-10.1表示输出有一位小数的10位数(包括小数点),且左对齐,不足位数时右补空格
f(2)=f(1)*f(1)=4f(3)=f(2)*f(1)=8f(4)=f(2)*f(2)=16f(5)=f(2)f(3)=32f(n)/f(n-1)=2f(2)/f(1)+f(3)/f(2)+..
f(n+1)={2f(n)+n}/22f(n+1)=2f(n)+n;f(n+1)=f(n)+n/2;f(n+1)-f(n)=n/2f(n)-f(n-1)=(n-1)/2...f(2)-f(1)=1/2
①若f(1)=1,代入后有f(1)=3,矛盾;②若f(1)=2,代入后有f(2)=3,符合;③若f(1)=3,代入后有f(3)=3,矛盾.以后继续代入,则都矛盾.所以f(1)=2,再代入有f(2)=3
用数学归纳法:首先:n=1,2,3时容易知道f(1),f(2),f(3)为斐波那契数列,假设n=k使f(k+1)=f(k)+f(k-1)成立时n=k+1使f(k+2)=f(k)+f(k+1)也成立就可