f=z*z ((2z 1)(z-2))
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 19:04:15
z=a+biZ拔*Z=a^2+b^2=13Z+2i=a^2+(b+2)^2=a^2+b^2+4b+4=5a=±2b=---3=Z1的模除Z1模的值=Z分之Z1的模乘以Z的模=13
1、z=a+bi,a,b是实数则|z|=√(a²+b²)所以a+√(a²+b²)+bi=4-2i所以a+√(a²+b²)=4,b=-2a+√
1.(3+2i)/13或(3+2i)/(-13)2.(1).2倍的根号2(2).1+2倍根号2(3).以(0,1)为圆心,5为半径的圆
|f(z1+z2)|=|f(2+3i+2+i)|=|f(4+4i)|=|(|1-4-4i|)|=|(|-3-4i|)|=|√(3²+4²)|=5
因为|z|=1,所以Z^2一定=1,所以Z1=4-Z;又因为z=1或者-1,所以当z=1时,Z1=3;当z=-1时,Z1=5;所以|Z1|的最大值和最小值分别是3,5.
先计算Z1.Z1(1+i)=2i,因此Z1=1+i;令Z=cosθ+isinθ,则|Z-Z1|=√[(1-cosθ)^2+(1-sinθ)^2]=√(3-2cosθ-2sinθ)=√[3-2√2sin
因为f(z)=2z+z'-3i,把z'+i代入有:f(z'+i)=2(z'+i)+z'-3i=3z'-i又因为:f(z'+i)=6-3i.令z'=x+yi.x,y是实数,代入上式有:3x+(3y-1)
A={z||z-2|≤2},B={z|z=1/2(z1)i+b,z1∈A,b∈R}设z=a+biz-2=a-2+bi(a-2)^2+b^2≤4a∈[0,4]b∈[-2,2]B:z=(a+bi)i/2+
z=1+i,则z1=1-i(1+z1)*z²(1+1-i)*(1+i)²=(2-i)*2i=4i-2i²=2+4i
利用图像法.点z1在x轴上,点z2在y轴上,因为|z-z1|=|z-z2|,即z到z1的距离等于z到z2的距离,即z必在∠z1Oz2的角平分线上,所以z在一,三象限的角平分线上,即辐角主值为π/4或5
首先f(z)的孤立奇点只有z=2,z=-3,z=-10这三个,而f(z)在同一个圆环域内部展开成洛朗级数是唯一的,所以本题要找的其实就是分别以这三个孤立奇点为圆心的最大解析圆环域有多少个,对于z=2,
f(z)=z/(z+1)*e^[2/(z+1)]设I=∫(|z|=π)f(z)dz因为在区域|z|
|z-z1|=2表示在复平面上以z1=-3i为心半径为2的圆,在这个圆上到原点最远的点是-5i,即|z|的最大值为5
f(z1-z2)=z1-z2=(3+4i)-(-2-i)=3+4i+2+i=5+5i
设z=x+yi(x,y∈R),由|z|2+(z+.z)i=3−i2+i,得x2+y2+2xi=(3−i)(2−1)(2+i)(2−i)=1−i,∴x2+y2=12x=−1,解得x=−12y=±32.∴
z1=z1+z2化为:z1+z1z2=z…①,z2=z21+z化为:z2+z2z=z2…②,②代入①可得:z1+z1(z2+z2z)=z,即z1+z1•z2+(z2z1-1)•z=0,∵z1=z1+z
f(z)=1-2/(z+2)=1-2/[(z-2)+5]=1-0.4*1/[1+(z-2)/5]=1-0.4*Σ【-(z-2)/5】^n(0到+∞)
f(z)=1-2/(z+2)=1-1/[1+(z/2)]=1-1/[1-(-z/2)],根据1/(1-z)=1+z+z^2+...,所以f(z)=z/2-z^2/2^2+z^3/2^3-...+(-1
z-z1=2i.1,z1=iz.21式+2式得:z=2i+iz(1-i)z=2iz=2i/(1-i)z=2i(1+i)/(1+1)=-1+iz1=iz=i(-1+i)z1=-1-i