find d^2y dx^2 for x 3 x-1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 01:47:57
find d^2y dx^2 for x 3 x-1
高数 第一步 如题````为什么突然就出现ydx+(2-x)dy 怎么的出来的我列方程解不出来``````

对坐标的曲线积分的物理意义就是做功.ds=dxi+dyj(i,j为向量)F也可以表示出来再问:我是问怎么求出来的````我知道是F*ds可是F怎么求出来的`````我的方程是F=(a,b)(x-2)a

求微分方程ydx=xdy满足y(1)=2的通解(急)在线等.求帮忙,谢谢!

dy/y=dx/x积分:ln|y|=ln|x|+C1即y=cx代入y(1)=2=c故y=x再问:请问你的答案是否正确?另外能不能帮忙把我的这个问题也解决了?求函数z=x³+y³-x

[(2-x)dy/dx+y]²+(x-ydx/dy)²=4

我说说我的思路,但不一定对.1.这个方程很复杂.观察由方程的左边同时出现了dy/dx,dx/dy,并等式右边是一个常数.为了保证等式左边两项的平方和等于一个常数,则等式左边两项必定每一项都为一个常数.

e^ydx+(xe^y+2y)dy=0 求微分方程的通解

e^ydx+(xe^y+2y)dy=d(xe^y)+d(y^2)=0------全微分积分可得xe^y+y^2=0

方程ydx-xdy=(x^2+y^2)dx的通解

ydx-xdy=(x²+y²)dxy-x•dy/dx=x²+y²y'=y/x-y²/x-x(令y=-xv,y'=-(xv'+v)=-xv'

求微分方程x^2ydx-(x^3+y^3)dy=0的通解

x^2ydx-(x^3+y^3)dy=0变形:dx/dy=x/y+(y/x)^2设x/y=u,x=yudx/dy=u+ydu/dyu+ydu/dy=u+(1/u)^2ydu/dy=(1/u)^2u^2

微分方程解答2ydx-3xy^2dx-xdy=0(化成全微分)y"=(y')^3+y'(高阶方程)

1.∵2ydx-3xy²dx-xdy=0==>2xydx-3x²y²dx-x²dy=0(等式两端同乘以x)==>yd(x²)-x²dy=y&

(xdy+ydx)/(x^2+y^2)在x^2+y^2>0的D平面线路径积分,为什么和路径无关呀,不是单连通区域呀!

由于不是单连通区域,因此不能说积分与路径无关,对于任意的两条路径,要看原点是否在这两条路径所围区域内,如果原点不在其内,则与路径无关;如果原点在这个区域内,积分与路径是有关的.你所说的x²+

问一道格林公式的题计算 ∫xy^2dy-x^2ydx,其中C为圆周x^2+y^2=a^2.我计算到∫xy^2dy-x^2

∮xy^2dy-x^2ydx=∫∫(x^2+y^2)dxdy≠∫∫a^2dxdy!用高斯公式已将曲线积分化为了二重积分,是在整个区间D上,不是在圆周上.

求解下列微分方程 ①dy/dx=(x+y)/(x-y)②(x-y)ydx-x^2dy=0③dy/dt+ytant=sin

1dy/dx=(x+y)/(x-y)y=xudy=xdu+udxxdu+udx=(1+u)/(1-u)dxxdu=[(1+u)/(1-u)-u]dx(1-u)du/(1+u^2)=dx/xarctan

求解微分方程 2ydx+(y^3-x)dy=0

2ydx+(y^3-x)dy=0dx/dy-(1/2y)x=-y^2/2,这是一阶线性方程,由通解公式:e^∫(1/2y)dy=√yx=√y(C+∫[(-y^2/2)/√y]dy)=√y(C-(1/5

下列微分方程是一阶线性微分方程的是() A.y'=siny.B.yy'=1.C.y'=x^2+y^2.D.ydx+(x-

定义:形如y'+P(x)y=Q(x)的微分方程称为一阶线性微分方程,Q(x)称为自由项.(这里所谓的一阶,指的是方程中关于Y的导数是一阶导数.)∵ydx+(x-lny)dy=0==>ydx/dy+x=

第二型曲线积分问题∫L ydx+zdy+xdz,其中L是x+y=2与x^2+y^2+z^2=2(x+y)的交线,从原点看

设S是平面x+y=2被x^2+y^2+z^2=2(x+y)截得的部分,取上侧,则S的单位法向量n=(cosα,cosβ,cosγ)=(1/√2,1/√2,0),由斯托克斯公式,原积分=-∫∫dxdy+

求微分方程ydx-xdy+(y^2)xdx=0的通解

ydx-xdy+(y^2)xdx=0y-xdy/dx=-(y^2)x(y-xy')/y^2=-x(x/y)'=-x两边积分得x/y=-x^2/2+C

格林定理 椭圆如何用格林定理推导出面积公式并用于椭圆x=acost,y=bsint为什么A= 1/2 * (ydx-xd

A=1/2∮xdy-ydx=1/2∫(abcost^2+absint^2)dt=1/2*ab∫dt=∏ab.(其中∫的积分是从0积到2∏.也就是t的范围是[0,2∏].高等数学书上有推导公式吧!

L为取正向的圆周,x^2+y^2=R^2,求曲线积分∮xy^2dy-x^2ydx的值(答案是πR^4/2)

因为取格林公式后,由线积分变成面积分,二重积分(x^2+y^2)dxdy,(x^2+y^2)不能用圆周方程x^2+y^2=R^2替换,因为不在线上一重积分了,改为在圆面上二重积分了,应该用极坐标计算,

求曲线积分fxy^2dy-x^2ydx其中L为圆周x^2+y^2=a^2的正向,

因为P=-x^2y,Q=xy^2.所以Py=-x^2,Qx=y^2.利用格林公式:∮cP(x,y)dx+Q(x,y)dy=∫∫D(dQ/dx-dP/dy)dxdy,其中c是的取正向的边界曲线.故原式=

求曲线积分fxy^2dy-x^2ydx其中L为圆周x^2+y^2=a^2(a>0)取逆时针方向!

满足格林公式如果PQ相等是与积分路径无关只要L闭封,P.Q在D中有一阶连续偏导数,且D的边界取正方向就可以用格林公式

求曲线积分∫c xy^2dy-x^2ydx ,其中C是x^2+y^2=4的上半圆沿逆时针方向 求过程 谢谢

再问:xΪɶŪ��2cos再答:参数方程嘛再问:==��Ϊʲô����3cos4cos5cos��Ҳ�Dz���̰�再答:根据圆C设的啊,不用管那个路径吗?半径是2,所以设2cost,2sint凡是(x